贝德教育“全向吸顶”音响噪音消除案例

天津某中学电教老师告知,某教室吸顶音响有比较大的底噪,希望抓紧解决。

学校安装得是贝德教育装备健康声系列的全向吸顶音箱,安装在教室房顶正中间,内主要解决教师讲课的扩音问题,保障声音的清晰、洪亮、覆盖均匀。

本身设备内置功放、音频处理器,集成度很高,很少发生这种故障。设备支持无线耳麦、无线鹅颈、无线手持等话筒,也支持线路输入。 

现场进行排查,发现确有一条音频线一端与HDMI分离器连接(解决电脑HDMI接入大屏),一端介入吸顶音箱,因此主要怀疑线路虚接造成底噪增加。但是检查两侧的插头,均没有虚接问题,看来是周边干扰造成,本想用一个音频“共底隔离器”测试一下,可惜手头没有。 

按照这个思路,打开设备调试软件进行问题查找。贝德吸顶音箱支持手机(APP/小程序)进行设备参数调整,因此打开手机“贝德教育”APP。 

 

先选择成品型号,再进行连接,图标LOGO从白色变为橙色表示连接成功。 

分别调整话筒、广播、音乐等旋钮音量,发现噪音没有好转,最后再“更多”中找到“吊麦1”被打开,音量旋至最小,噪音消失。这说明电脑声卡的有线连接是用的这一路输入。 

在音量的下面,有一个“噪音门限”旋钮,打开后发现底噪消失了,这样问题就能够解决了。 

不过为了避免声音失真,经过不断测试,将旋钮尽量调小,底噪减小到几不可闻就好了。 

可见“贝德”内置音频处理器功能还是很强大的。

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

beiger

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值