本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
题目链接:BZOJ4804
正解:莫比乌斯反演
解题报告:
比较简单的莫乌题,都是老套路了,最后设$Q=gt$,可以根号回答一次询问。
注意后面那个积性函数的递推公式!边界不要漏了!
//It is made by ljh2000
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。
#include <algorithm>
#include <iostream>
#include <cstring>
#include <vector>
#include <cstdio>
#include <string>
#include <queue>
#include <cmath>
#include <ctime>
using namespace std;
typedef long long LL;
const int MAXN = 10000011;
const int MAXM = 5000011;
int n,prime[MAXM],cnt,q[5012],maxl;
LL sum[MAXN],ans;
bool vis[MAXN];
inline LL sqr(LL x){ return x*x; }
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
}
inline void Init(){
sum[1]=1;
for(int i=2;i<=maxl;i++) {
if(!vis[i]) {
prime[++cnt]=i; sum[i]=i-2;
//if(1LL*i*i<=maxl) sum[i*i]=1LL*(i-1)*(i-1);
}
for(int j=1;j<=cnt && i*prime[j]<=maxl;j++) {
vis[i*prime[j]]=1;
if(i%prime[j]==0) {
if(i/prime[j]%prime[j]==0)
sum[i*prime[j]]=sum[i]*prime[j];
else
sum[i*prime[j]]=sum[i/prime[j]]*(LL)((prime[j]-1)*(prime[j]-1));
break;
}
sum[i*prime[j]]=sum[i]*sum[prime[j]];
}
}
for(int i=2;i<=maxl;i++) sum[i]+=sum[i-1];
}
inline void work(){
int T=getint(),nex;
for(int o=1;o<=T;o++) q[o]=getint(),maxl=max(q[o],maxl);
Init();
for(int o=1;o<=T;o++) {
ans=0; n=q[o];
for(int i=1;i<=n;i=nex+1) {
nex=n/(n/i);
ans+=sqr(n/i)*(sum[nex]-sum[i-1]);
}
printf("%lld\n",ans);
}
}
int main()
{
#ifndef ONLINE_JUDGE
freopen("4804.in","r",stdin);
freopen("4804.out","w",stdout);
#endif
work();
return 0;
}
//有志者,事竟成,破釜沉舟,百二秦关终属楚;苦心人,天不负,卧薪尝胆,三千越甲可吞吴。