Description
物流公司要把一批货物从码头A运到码头B。由于货物量比较大,需要n天才能运完。货物运输过程中一般要转
停好几个码头。物流公司通常会设计一条固定的运输路线,以便对整个运输过程实施严格的管理和跟踪。由于各种
因素的存在,有的时候某个码头会无法装卸货物。这时候就必须修改运输路线,让货物能够按时到达目的地。但是
修改路线是一件十分麻烦的事情,会带来额外的成本。因此物流公司希望能够订一个n天的运输计划,使得总成本
尽可能地小。
Input
第一行是四个整数n(1<=n<=100)、m(1<=m<=20)、K和e。n表示货物运输所需天数,m表示码头总数,K表示
每次修改运输路线所需成本。接下来e行每行是一条航线描述,包括了三个整数,依次表示航线连接的两个码头编
号以及航线长度(>0)。其中码头A编号为1,码头B编号为m。单位长度的运输费用为1。航线是双向的。再接下来
一行是一个整数d,后面的d行每行是三个整数P( 1 < P < m)、a、b(1< = a < = b < = n)。表示编号为P的码
头从第a天到第b天无法装卸货物(含头尾)。同一个码头有可能在多个时间段内不可用。但任何时间都存在至少一
条从码头A到码头B的运输路线。
Output
包括了一个整数表示最小的总成本。总成本=n天运输路线长度之和+K*改变运输路线的次数。
Sample Input
5 5 10 8
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5
1 2 1
1 3 3
1 4 2
2 3 2
2 4 4
3 4 1
3 5 2
4 5 2
4
2 2 3
3 1 1
3 3 3
4 4 5
Sample Output
32
//前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32
//前三天走1-4-5,后两天走1-3-5,这样总成本为(2+2)*3+(3+2)*2+10=32
正解:DP+SPFA
解题报告:
这道题是看了题解才做出来的,解法挺神的。
首先预处理出来某一段连续的时间都使用同一条航线的最小值,显然打一下标记,不能到达的不经过,可以SPFA快速求出。
然后DP考虑某一天换航线的情况,枚举在哪里换,转移简单,记得最后减掉一次的换航路费用,因为到终点无需换航线。
我刚开始一看到数据挺小觉得乱搞可水过,后来发现我gi了。。。
第一遍交居然wa了,我无法理解,后来调着调着才发现SPFA打萎了。。。
1 //It is made by jump~ 2 #include<iostream> 3 #include<cstdio> 4 #include<cmath> 5 #include<cstring> 6 #include<cstdlib> 7 #include<algorithm> 8 #include<vector> 9 using namespace std; 10 const int MAXN = 450; 11 const int MAXD = 1500; 12 const int MAXE = 100011; 13 const int inf = (1<<29); 14 int n,m,k,num; 15 int first[MAXN],next[MAXE],to[MAXE],w[MAXE]; 16 int ecnt; 17 int cost[MAXD][MAXD];//cost[i][j]表示第i天到第j天都使用的是一条航线的最小花费 18 bool no[MAXN][MAXD]; 19 bool pd[MAXN]; 20 int dui[MAXN*100]; 21 bool stop[MAXN]; 22 int dis[MAXN]; 23 int f[MAXD]; 24 25 inline int getint(){ 26 char c=getchar(); int w=0,q=0; 27 while(c!='-' && ( c<'0' || c>'9')) c=getchar(); 28 if(c=='-') c=getchar(),q=1; 29 while(c>='0' && c<='9') w=w*10+c-'0',c=getchar(); 30 return q?-w:w; 31 } 32 33 inline void link(int x,int y,int z){ 34 next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y; w[ecnt]=z; 35 next[++ecnt]=first[y]; first[y]=ecnt; to[ecnt]=x; w[ecnt]=z; 36 } 37 38 inline void spfa(){ 39 int head=0,tail=1; 40 memset(pd,0,sizeof(pd)); 41 dui[1]=1; pd[1]=1; 42 for(int i=1;i<=m;i++) dis[i]=inf; 43 dis[1]=0; 44 while(head<tail) { 45 head++; int u=dui[head]; 46 pd[u]=0; 47 for(int i=first[u];i;i=next[i]) { 48 int v=to[i]; 49 if(stop[v]) continue; 50 if(dis[v]>dis[u]+w[i]) { 51 dis[v]=dis[u]+w[i]; 52 if(!pd[v]) { 53 pd[v]=1; dui[++tail]=v; 54 } 55 } 56 } 57 } 58 } 59 60 inline void work(){ 61 n=getint(); m=getint(); k=getint(); num=getint(); 62 int x,y,z; 63 for(int i=1;i<=num;i++) { 64 x=getint(); y=getint(); z=getint(); link(x,y,z); 65 } 66 67 int p=getint(); 68 for(int i=1;i<=p;i++) { 69 x=getint(); y=getint(); z=getint(); 70 for(int now=y;now<=z;now++) no[x][now]=1; 71 } 72 73 for(int i=1;i<=n;i++) 74 for(int j=i;j<=n;j++){ 75 memset(stop,0,sizeof(stop)); 76 for(int l=2;l<m;l++) 77 for(int now=i;now<=j;now++) if(no[l][now]){ stop[l]=1; break; } 78 spfa(); 79 cost[i][j]=inf; if(dis[m]<inf) cost[i][j]=dis[m]*(j-i+1);//天数 80 } 81 82 memset(f,127/3,sizeof(f)); 83 f[0]=0;//从0开始 84 for(int i=1;i<=n;i++) 85 for(int j=0;j<i;j++) { 86 if(cost[j+1][i]<inf) 87 f[i]=min(f[j]+cost[j+1][i]+k,f[i]); 88 } 89 printf("%d",f[n]-k);//最后一天无需再换线路 90 } 91 92 int main() 93 { 94 work(); 95 return 0; 96 }