大家好,今天和各位分享一下基于策略的深度强化学习方法,策略梯度法是对策略进行建模,然后通过梯度上升更新策略网络的参数。我们使用了 OpenAI 的 gym 库,基于策略梯度法完成了一个小游戏。完整代码可以从我的 GitHub 中获得:
https://github.com/LiSir-HIT/Reinforcement-Learning/tree/main/Model
1. 基于策略的深度强化学习
针对智能体在大规模离散动作下无法建模的难题,在基于值函数的深度强化学习中,利用神经网络对 Q 值函数近似估计,使深度学习与强化学习得到完美融合。
但是基于值函数的深度强化学习有一定的不足之处:
(1) 无法处理连续动作的任务。DQN 系列的算法可以较好地解决强化学习中大规模离散动作空间的任务,但在连续动作的任务中,难以实现利用深度神经网络对所有状态-动作的 Q 值函数近似表达。
(2) 无法处理环境中状态受到限制的问题。在基于值函数深度强化学习更新网络参数时,损失函数会依赖当前状态和下一个状态的值函数,当智能体在环境中观察的状态有限或建模受到限制时,就会导致实际环境中两个不同的状态有相同的价值函数,进而导致损失函数为零,出现梯度消失的问题。
(3) 智能体在环境中的探索性能较低。基于值函数的深度强化学习方法中,目标值都是从动作空间中选取一个最大价值的动作,导致智能体训练后的策略具有确定性,而面对一些需要随机策略进行探索的问题时,该方法就无法较好地解决。
由于基于值函数的深度强化学习存在上述的一些局限性,需要新的方法来解决这些问题,于是基于策略的深度强化学习被提出。该方法中将智能体当前的策略参数化,并且使用梯度的方法进行更新。
2. 策略梯度法
强化学习中策略梯度算法是对策略进行建模,然后通过梯度上升更新策略网络的参数。Policy Gradients 中无法使用策略的误差来构建损失函数,因为参数更新的目标是最大化累积奖励的期望值,所以策略更新的依据是某一动作对累积奖励的影响,即增加使累积回报变大的动作的概率,减弱使累积回报变小的动作的概率。
下图代表智能体在当前策略下,完成一个回合后构成的状态、动作序列 ,其中,Actor 是策略网络。每个回合结束后的累计回报为每个状态下采取的动作的奖励之和: