题目:
给定一个 m x n 的矩阵,如果一个元素为 0,则将其所在行和列的所有元素都设为 0。请使用原地算法。 示例 1: 输入: [ [1,1,1], [1,0,1], [1,1,1] ] 输出: [ [1,0,1], [0,0,0], [1,0,1] ] 示例 2: 输入: [ [0,1,2,0], [3,4,5,2], [1,3,1,5] ] 输出: [ [0,0,0,0], [0,4,5,0], [0,3,1,0] ] 进阶: 一个直接的解决方案是使用 O(mn) 的额外空间,但这并不是一个好的解决方案。 一个简单的改进方案是使用 O(m + n) 的额外空间,但这仍然不是最好的解决方案。 你能想出一个常数空间的解决方案吗?
解题思路:
0(M+n)的额外空间算法比较容易实现,实现代码如下:
class Solution { public: void setZeroes(vector<vector<int>>& matrix) { int row = matrix.size(); int colum = matrix[0].size(); vector<bool> zero_row(row,false); vector<bool> zero_colum(colum,false); for(int i = 0; i < row; ++i){ for(int j = 0;j < colum; ++j){ if(matrix[i][j] == 0){ zero_row[i] = true; zero_colum[j] = true; } } } for(int i = 0; i < row; ++i){ for(int j = 0;j < colum; ++j){ if(zero_row[i]||zero_colum[j]){ matrix[i][j] = 0; } } } } };