1、一维前缀和问题
这个优化主要是用来求一个序列a中,a[i] + a[i + 1] + ..... + a[j - 1] + a[j] 的和的问题。
具体原理就是用sum[i]来表示"a[1] + a[2] + a[3] + ...... + a[i]",其中sum[0] = 0,则(a[i] + a[i +1] + .... + a[j])即等于sum[j] - sum[i - 1]。
2、二维前缀和问题
对于一个矩阵(即一个二维数组),我们求出子矩阵[x1 ~ x2][y1 ~ y2]的和。
sum[i][j]为子矩阵[1 ~ i][1 ~ j]的和。
根据容斥原理:sum[0][j] = sum[i][0] = 0;
a[x1 ~ x2][y1 ~ y2] = sum[x2][y2] - sum[x1 - 1][y2] - sum[x2][y1 - 1] + sum[x1 - 1][y1 - 1]
容斥原理:在计数时,必须注意没有重复,没有遗漏。为了使重叠部分不被重复计算,人们研究出一种新的计数方法,这种方法的基本思想是:先不考虑重叠的情况,把包含于某内容中的所有对象的数目先计算出来,然后再把计数时重复计算的数目排斥出去,使得计算的结果既无遗漏又无重复,这种计数的方法称为容斥原理。