学了ZZY的算法,就要过一下他出的题。
题目大意:
给出一些直线,求半平面交的面积。
解题思路:
半平面交求面积。
下面是代码:
#include <set>
#include <map>
#include <queue>
#include <math.h>
#include <vector>
#include <string>
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#define eps 1e-10
#define pi acos(-1.0)
#define inf 107374182
#define inf64 1152921504606846976
#define lc l,m,tr<<1
#define rc m + 1,r,tr<<1|1
#define zero(a) fabs(a)<eps
#define iabs(x) ((x) > 0 ? (x) : -(x))
#define clear1(A, X, SIZE) memset(A, X, sizeof(A[0]) * (SIZE))
#define clearall(A, X) memset(A, X, sizeof(A))
#define memcopy1(A , X, SIZE) memcpy(A , X ,sizeof(X[0])*(SIZE))
#define memcopyall(A, X) memcpy(A , X ,sizeof(X))
#define max( x, y ) ( ((x) > (y)) ? (x) : (y) )
#define min( x, y ) ( ((x) < (y)) ? (x) : (y) )
using namespace std;
const int maxn = 30005;
int dq[maxn], top, bot, pn, order[maxn], ln,num;
struct Point
{
double x, y;
} p[maxn];
struct Line
{
Point a, b;
double angle;
} l[maxn];
int dblcmp(double k)
{
if(fabs(k) < eps) return 0;
return k > 0 ? 1 : -1;
}
double multi(Point p0, Point p1, Point p2)
{
return (p1.x-p0.x)*(p2.y-p0.y) - (p1.y-p0.y)*(p2.x-p0.x);
}
bool cmp(int u, int v)
{
int d = dblcmp(l[u].angle-l[v].angle);
if(!d) return dblcmp(multi(l[u].a, l[v].a, l[v].b)) > 0;
//大于0取向量左半部分为半平面,小于0,取右半部分
return d < 0;
}
void getIntersect(Line l1, Line l2, Point& p)
{
double dot1, dot2;
dot1 = multi(l2.a, l1.b, l1.a);
dot2 = multi(l1.b, l2.b, l1.a);
p.x = (l2.a.x * dot2 + l2.b.x * dot1) / (dot2 + dot1);
p.y = (l2.a.y * dot2 + l2.b.y * dot1) / (dot2 + dot1);
}
bool judge(Line l0, Line l1, Line l2)
{
Point p;
getIntersect(l1, l2, p);
return dblcmp(multi(p, l0.a, l0.b)) < 0;
//大于小于符号与上面cmp()中注释处相反
}
void addLine(double x1, double y1, double x2, double y2)
{
l[ln].a.x = x1;
l[ln].a.y = y1;
l[ln].b.x = x2;
l[ln].b.y = y2;
l[ln].angle = atan2(y2-y1, x2-x1);
order[ln] = ln;
ln++;
}
void halfPlaneIntersection()
{
int i, j;
sort(order, order+ln, cmp);
for(i = 1, j = 0; i < ln; i++)
if(dblcmp(l[order[i]].angle-l[order[j]].angle) > 0)
order[++j] = order[i];
ln = j + 1;
dq[0] = order[0];
dq[1] = order[1];
bot = 0;
top = 1;
for(i = 2; i < ln; i++)
{
while(bot < top && judge(l[order[i]], l[dq[top-1]], l[dq[top]]))
top--;
while(bot < top && judge(l[order[i]], l[dq[bot+1]], l[dq[bot]]))
bot++;
dq[++top] = order[i];
}
while(bot < top && judge(l[dq[bot]], l[dq[top-1]], l[dq[top]])) top--;
while(bot < top && judge(l[dq[top]], l[dq[bot+1]], l[dq[bot]])) bot++;
num=0;
for(i=bot; i<top; i++)
{
getIntersect(l[dq[i]],l[dq[i+1]],p[num++]);
}
if(top > bot+1)getIntersect(l[dq[top]], l[dq[bot]],p[num++]);
}
double xmul(Point p0,Point p1,Point p2)
{
return (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y);
}
double Get_area()
{
double area = 0;
for(int i = 1; i < num-1; i++)
area += xmul(p[0], p[i], p[i+1]);
return fabs(area)/2.0;
}
int main()
{
int i;
double x1,x2,y1,y2;
scanf ("%d", &pn);
for(ln = i = 0; i < pn; i++)
{
scanf("%lf%lf%lf%lf",&x1,&y1,&x2,&y2);
addLine(x1, y1, x2,y2);
}
addLine(0,0,10000,0);
addLine(10000,0,10000,10000);
addLine(10000,10000,0,10000);
addLine(0,10000,0,0);
halfPlaneIntersection();
printf("%.1f\n",Get_area());
return 0;
}