知识分享!电阻按照用途分类可以分为哪几种电阻?-道合顺大数据infinigo

本文介绍了电阻的多种类型,包括普通型、精密型、高频型、高压型、高阻型、电阻网络、敏感电阻等,详细阐述了各类电阻的特点和应用场景。敏感电阻中涵盖了压敏、湿敏、光敏、气敏、力敏和热敏电阻,还提到了熔断电阻器和磁敏电阻的工作原理和用途。
摘要由CSDN通过智能技术生成

在这里插入图片描述

(1)普通型。指能适应一般技术要求的电阻,额定功率范围为0.05、√2W,阻值为1 Q~22MQ,允许误差±5070、±10%、±20020等。

(2)精密型。有较高精密度及稳定性的电阻,功率一般不大于2W,标称值在O.OIQ~20MQ,之间,精度在±2020~±O.OOloZo之间分挡。

(3)高频型。电阻自身电感量极小,常称为无感电阻。用于高频电路,阻值小于lkQ,功率范围宽,最大可达lOOWo

(4)高压型。用于高压装置中的电阻,功率在0.5-15W之间,额定电压可达35kV以上,标称阳值可达lGQo

(5)高阻型。阻值在10MQ以上,最高可达l014Qo

(6)电阻网络(电阻排)o综合掩膜、光刻、烧结等工艺技术,在一块基片上制成多个参数、性能一致的电阻,连接成电阻网络,也叫集成电阻。

(7)敏感电阻。各类敏感电阻,按其信息传输关系可分为缓变型和突变型两种,广泛应用于检测和自动化控制等技术领域。

1)压敏电阻。主要有氧化锌、碳化硅和氧化锌压敏电阻。

2)湿敏电阻。湿敏电阻由感湿层、电极、绝缘体组成。氯化锂湿敏电阻随湿度上升而电阻减小,缺点为测试范围小、特性重复性不好、受温度影响大。碳湿敏电阻缺点为低温灵敏度低、阻值受温度影响大,较少使用。氧化物湿敏电阻性能较优越,可长期使用,受温度影响小.,阻值与湿度变化呈线性关系。

3)光敏电阻。光敏电阻大多是由半导体材料制成的,它利用半导体的光导电特性使电阻器的阻值随入射光线的强弱发生变化。当入射光线增强时,电阻值明显减小;当入射光线减弱时,阻值显著增大占

4)气敏电阻。气敏电阻利用某些半导体吸收某种气体后发生氧化还原反应制成,主要成分是金属氧化物,主要品种有金属氧化物气敏电阻、复合氧化物气敏电阻、陶瓷气敏电阻等。

5)力敏电阻。力敏电阻是一种阻值随压力变化丽变化的电阻,可制成各种力矩计、半导体话筒、压力传感器等。主要品种有硅力敏电阻器、硒碲合金力敏电阻器,相对而言,合金力敏电阻器具有更高灵敏度。

6)热敏电阻。热敏电阻的电阻值会随着本体温度的变化呈现出阶跃性的变化,具有半导体特性。热敏电阻按照温度系数的不同分为正温度系数热敏电阻(简称PTC热敏电阻)和负温度系数热敏电阻(简称NTC热敏电阻)o超过一定的温度(居里温度)时,PTC热敏电阻的电阻值随着温度的升高呈阶跃性增高。

一般情况下,有机高分子PTC热敏电阻适用于过流保护,陶瓷PTC热敏电阻可适用于各种用途。

NTC热敏电阻的电阻值随着温度的升高呈阶跃性减小o NTC热敏电阻以锰、钴、镍和铜等金属氧化物为主要材料,采用陶瓷工艺制造而成。温度低时,这些氧化物材料的载流子数目少,所以其电阻值较高;随着温度的升高,载流子数目增加,所以电阻值降低。

7)熔断电阻器。熔断电阻器俗称熔丝电阻器,是一种具有熔断丝及电阻器作用的双功能元件。在正常情况下具有普通电阻器的功能,一旦电路出现故障时,该电阻器因过负荷会在规定的时间内熔断开路,从而起到保护其他电路的作用。熔断电阻器多为灰色,用色环或数字表示电阻值。熔断电陧的熔断时间一般为10So熔断电阻器的常用型号有RF10、RF11、RRD0910.RRD0911等o RF10型表面涂有灰色不燃涂料,其电阻值用色环表示oRF11的阻值用字母表示,也有的只标功率不标阻值。

与传统的熔断器和其他保护装置相比,熔断电阻器具有结构简单、使用方便、熔断功率小、熔断时间短等优点,广泛用于电子设备中。

8)磁敏电阻。磁敏电阻是利用磁电效应能改变电阻器的电阻值的原理制成的,其阻值会随穿过它的磁通量密度的变化而变化。它的显著特点是,在弱磁场中阻值与磁场强度的关系呈平方关系,并有很高的灵敏度。

以上就是电阻按照用途分成的种类,你学到了吗?

道合顺大数据infinigo

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值