牛跑步 bzoj-1598
题目大意:给你n个点,m条边的有向图。求从1到n的严格的第k短路。
注释:$1\le n\le 1000$,$1\le m \le 10,000$,$1\le k \le 100$。
想法:
A*:俗称机器人走路算法。就是说从一个点走到另一个点的最短路径,显然可以bfs。我们可以在bfs时设立估价函数来判断queue中先取出那个点。
比如说这道题,我们先将所有边存起来,先都连反向边。然后从n节点开始跑一遍堆优化dij表示这个点到n的最短路。然后我们从1号节点开始bfs。我们将所有遍历到的节点扔进堆,堆中的估价函数是从源点到当前状态的长度dis加上从当前节点到n的最短路。这样的话,第一个到的点一定是最短路,第二个同理,以此类推,知道我们在n节点已经接收到了k个不同的值,break输出答案即可。
最后,附上丑陋的代码... ...
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <queue>
#include <stdlib.h>
#define N 100010
using namespace std;
int ans[N];
int tot,head[N],to[N],nxt[N],val[N];
int H[N];
struct Node
{
int dis,id;
Node(){}
Node(int dis_,int id_):dis(dis_),id(id_){}
inline bool operator < (const Node &x) const
{
return dis+H[id]>x.dis+H[x.id];
}
};
priority_queue<Node> q;
priority_queue<pair<int,int> >Q;
bool v[N];
inline void add(int x,int y,int z)
{
to[++tot]=y;
val[tot]=z;
nxt[tot]=head[x];
head[x]=tot;
}
int x[N],y[N],z[N];
int n;
bool vis[N];
void Dij()
{
memset(H,0x3f,sizeof H);
memset(vis,0,sizeof vis);
H[n]=0;
Q.push(make_pair(0,n));
while(!Q.empty())
{
int a=Q.top().second;
Q.pop();
if(vis[a]) continue;
vis[a]=1;
for(int i=head[a];i;i=nxt[i])
{
if(H[to[i]]>H[a]+val[i])
{
H[to[i]]=H[a]+val[i];
Q.push(make_pair(-H[to[i]],to[i]));
}
}
}
}
int cnt=0;
void A_xing(int num)
{
q.push(Node(0,1));
while(!q.empty())
{
Node t=q.top();
q.pop();
int a=t.id;
int distance=t.dis;
if(a==n)
{
ans[++cnt]=distance;
// puts("Fuck");
}
if(cnt==num) return;
for(int i=head[a];i;i=nxt[i])
{
int w=distance+val[i];
/*if(!mp.count(make_pair(w,to[i])))
{
mp[make_pair(w,to[i])]=1;
q2.push(node(w,to[i]));
}*/
q.push(Node(w,to[i]));
}
}
}
int main()
{
int r,k;
scanf("%d%d%d",&n,&r,&k);
for(int i=1;i<=r;i++)
{
scanf("%d%d%d",&x[i],&y[i],&z[i]);
add(x[i],y[i],z[i]);
}
Dij();
memset(head,0,sizeof head);
tot=0;
for(int i=1;i<=r;i++)
{
add(y[i],x[i],z[i]);
}
// for(int i=1;i<=n;i++)
// {
// printf("%d:%d\n",i,H[i]);
// }
A_xing(k);
for(int i=1;i<=k;i++)
{
if(i<=cnt) printf("%d\n",ans[i]);
else printf("-1\n");
}
return 0;
}
小结:这种毒瘤算法好像少接触为妙。