JAVA图像缩放处理

http://www.blogjava.net/kinkding/archive/2009/05/23/277552.html

————————————————————————————————————————————————

 

今天在网上看到了一篇关于JAVA图像处理的文章,博主贴出了一个处理类:特点是高品质缩小,具体代码如下:
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;

import javax.imageio.ImageIO;

public  class ImageScale {

     private  int width;
     private  int height;
     private  int scaleWidth;
     double support = ( double) 3.0;
     double[] contrib;
     double[] normContrib;
     double[] tmpContrib;
     int startContrib, stopContrib;
     int nDots;
     int nHalfDots;

     public BufferedImage imageZoomOut(BufferedImage srcBufferImage,  int w,  int h,  boolean lockScale) {
        width = srcBufferImage.getWidth();
        height = srcBufferImage.getHeight();
        scaleWidth = w;
         if (lockScale) {
            h = w * height / width;
        }

         if (DetermineResultSize(w, h) == 1) {
             return srcBufferImage;
        }
        CalContrib();
        BufferedImage pbOut = HorizontalFiltering(srcBufferImage, w);
        BufferedImage pbFinalOut = VerticalFiltering(pbOut, h);
         return pbFinalOut;
    }

     /**
     * 决定图像尺寸
     
*/
     private  int DetermineResultSize( int w,  int h) {
         double scaleH, scaleV;
        scaleH = ( double) w / ( double) width;
        scaleV = ( double) h / ( double) height;
         //  需要判断一下scaleH,scaleV,不做放大操作
         if (scaleH >= 1.0 && scaleV >= 1.0) {
             return 1;
        }
         return 0;

    }  //  end of DetermineResultSize()

     private  double Lanczos( int i,  int inWidth,  int outWidth,  double Support) {
         double x;

        x = ( double) i * ( double) outWidth / ( double) inWidth;

         return Math.sin(x * Math.PI) / (x * Math.PI) * Math.sin(x * Math.PI / Support) / (x * Math.PI / Support);

    }  //  end of Lanczos()

    
//
    
//  Assumption: same horizontal and vertical scaling factor
    
//
     private  void CalContrib() {
        nHalfDots = ( int) (( double) width * support / ( double) scaleWidth);
        nDots = nHalfDots * 2 + 1;
         try {
            contrib =  new  double[nDots];
            normContrib =  new  double[nDots];
            tmpContrib =  new  double[nDots];
        }  catch (Exception e) {
            System.out.println("init contrib,normContrib,tmpContrib" + e);
        }

         int center = nHalfDots;
        contrib[center] = 1.0;

         double weight = 0.0;
         int i = 0;
         for (i = 1; i <= center; i++) {
            contrib[center + i] = Lanczos(i, width, scaleWidth, support);
            weight += contrib[center + i];
        }

         for (i = center - 1; i >= 0; i--) {
            contrib[i] = contrib[center * 2 - i];
        }

        weight = weight * 2 + 1.0;

         for (i = 0; i <= center; i++) {
            normContrib[i] = contrib[i] / weight;
        }

         for (i = center + 1; i < nDots; i++) {
            normContrib[i] = normContrib[center * 2 - i];
        }
    }  //  end of CalContrib()

    
//  处理边缘
     private  void CalTempContrib( int start,  int stop) {
         double weight = 0;

         int i = 0;
         for (i = start; i <= stop; i++) {
            weight += contrib[i];
        }

         for (i = start; i <= stop; i++) {
            tmpContrib[i] = contrib[i] / weight;
        }

    }  //  end of CalTempContrib()

     private  int GetRedValue( int rgbValue) {
         int temp = rgbValue & 0x00ff0000;
         return temp >> 16;
    }

     private  int GetGreenValue( int rgbValue) {
         int temp = rgbValue & 0x0000ff00;
         return temp >> 8;
    }

     private  int GetBlueValue( int rgbValue) {
         return rgbValue & 0x000000ff;
    }

     private  int ComRGB( int redValue,  int greenValue,  int blueValue) {

         return (redValue << 16) + (greenValue << 8) + blueValue;
    }

     //  行水平滤波
     private  int HorizontalFilter(BufferedImage bufImg,  int startX,  int stopX,  int start,  int stop,  int y,
             double[] pContrib) {
         double valueRed = 0.0;
         double valueGreen = 0.0;
         double valueBlue = 0.0;
         int valueRGB = 0;
         int i, j;

         for (i = startX, j = start; i <= stopX; i++, j++) {
            valueRGB = bufImg.getRGB(i, y);

            valueRed += GetRedValue(valueRGB) * pContrib[j];
            valueGreen += GetGreenValue(valueRGB) * pContrib[j];
            valueBlue += GetBlueValue(valueRGB) * pContrib[j];
        }

        valueRGB = ComRGB(Clip(( int) valueRed), Clip(( int) valueGreen), Clip(( int) valueBlue));
         return valueRGB;

    }  //  end of HorizontalFilter()

    
//  图片水平滤波
     private BufferedImage HorizontalFiltering(BufferedImage bufImage,  int iOutW) {
         int dwInW = bufImage.getWidth();
         int dwInH = bufImage.getHeight();
         int value = 0;
        BufferedImage pbOut =  new BufferedImage(iOutW, dwInH, BufferedImage.TYPE_INT_RGB);

         for ( int x = 0; x < iOutW; x++) {

             int startX;
             int start;
             int X = ( int) ((( double) x) * (( double) dwInW) / (( double) iOutW) + 0.5);
             int y = 0;

            startX = X - nHalfDots;
             if (startX < 0) {
                startX = 0;
                start = nHalfDots - X;
            }  else {
                start = 0;
            }

             int stop;
             int stopX = X + nHalfDots;
             if (stopX > (dwInW - 1)) {
                stopX = dwInW - 1;
                stop = nHalfDots + (dwInW - 1 - X);
            }  else {
                stop = nHalfDots * 2;
            }

             if (start > 0 || stop < nDots - 1) {
                CalTempContrib(start, stop);
                 for (y = 0; y < dwInH; y++) {
                    value = HorizontalFilter(bufImage, startX, stopX, start, stop, y, tmpContrib);
                    pbOut.setRGB(x, y, value);
                }
            }  else {
                 for (y = 0; y < dwInH; y++) {
                    value = HorizontalFilter(bufImage, startX, stopX, start, stop, y, normContrib);
                    pbOut.setRGB(x, y, value);
                }
            }
        }

         return pbOut;

    }  //  end of HorizontalFiltering()

     private  int VerticalFilter(BufferedImage pbInImage,  int startY,  int stopY,  int start,  int stop,  int x,
             double[] pContrib) {
         double valueRed = 0.0;
         double valueGreen = 0.0;
         double valueBlue = 0.0;
         int valueRGB = 0;
         int i, j;

         for (i = startY, j = start; i <= stopY; i++, j++) {
            valueRGB = pbInImage.getRGB(x, i);

            valueRed += GetRedValue(valueRGB) * pContrib[j];
            valueGreen += GetGreenValue(valueRGB) * pContrib[j];
            valueBlue += GetBlueValue(valueRGB) * pContrib[j];
        }

        valueRGB = ComRGB(Clip(( int) valueRed), Clip(( int) valueGreen), Clip(( int) valueBlue));
         //  System.out.println(valueRGB);
         return valueRGB;

    }  //  end of VerticalFilter()

     private BufferedImage VerticalFiltering(BufferedImage pbImage,  int iOutH) {
         int iW = pbImage.getWidth();
         int iH = pbImage.getHeight();
         int value = 0;
        BufferedImage pbOut =  new BufferedImage(iW, iOutH, BufferedImage.TYPE_INT_RGB);

         for ( int y = 0; y < iOutH; y++) {

             int startY;
             int start;
             int Y = ( int) ((( double) y) * (( double) iH) / (( double) iOutH) + 0.5);

            startY = Y - nHalfDots;
             if (startY < 0) {
                startY = 0;
                start = nHalfDots - Y;
            }  else {
                start = 0;
            }

             int stop;
             int stopY = Y + nHalfDots;
             if (stopY > ( int) (iH - 1)) {
                stopY = iH - 1;
                stop = nHalfDots + (iH - 1 - Y);
            }  else {
                stop = nHalfDots * 2;
            }

             if (start > 0 || stop < nDots - 1) {
                CalTempContrib(start, stop);
                 for ( int x = 0; x < iW; x++) {
                    value = VerticalFilter(pbImage, startY, stopY, start, stop, x, tmpContrib);
                    pbOut.setRGB(x, y, value);
                }
            }  else {
                 for ( int x = 0; x < iW; x++) {
                    value = VerticalFilter(pbImage, startY, stopY, start, stop, x, normContrib);
                    pbOut.setRGB(x, y, value);
                }
            }

        }

         return pbOut;

    }  //  end of VerticalFiltering()

     int Clip( int x) {
         if (x < 0)
             return 0;
         if (x > 255)
             return 255;
         return x;
    }

     public  static  void main(String[] args)  throws IOException {
        ImageScale is =  new ImageScale();
        String path = "D:\\My Documents\\My Pictures\\pictrue\\";
        BufferedImage image1 = ImageIO.read( new File(path + "test.jpg"));
         int w = 200, h = 400;
        BufferedImage image2 = is.imageZoomOut(image1, w, h,  true);
        FileOutputStream out =  new FileOutputStream(path + "test_2.jpg");
        ImageIO.write(image2, "jpeg", out);
    }
}

 

上面的代码中,本人做了一点小改进:imageZoomOut方法中,添加了一个lockScale参数,如果为true则表明保持纵横比。
程序运行的效果如下:
test.jpg(原图):


test_2.jpg(程序生成的图片):

转载于:https://www.cnblogs.com/cuizhf/p/3554374.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值