Embedding方法

 

方式1:

target_vocab_size = len(target_letter_to_int)

decoder_embeddings=tf.Variable(tf.random_uniform([target_vocab_size,decoding_embedding_size]))

decoder_embed_input = tf.nn.embedding_lookup(decoder_embeddings, decoder_input)

 

方式2

在Embedding中,我们使用tf.contrib.layers.embed_sequence,它会对每个batch执行embedding操作。

对序列数据执行embedding操作,输入[batch_size, sequence_length]的tensor,返回[batch_size, sequence_length, embed_dim]的tensor。

 

features = [[1,2,3],[4,5,6]]

outputs = tf.contrib.layers.embed_sequence(features, vocab_size, embed_dim)

如果embed_dim=4,输出结果为(2*3*4)

[[[0.1,0.2,0.3,0.1],[0.2,0.5,0.7,0.2],[0.1,0.6,0.1,0.2]], [[0.6,0.2,0.8,0.2],[0.5,0.6,0.9,0.2],[0.3,0.9,0.2,0.2]] ]

转载于:https://www.cnblogs.com/yongfuxue/p/10095886.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值