对文本抽取词袋模型特征

 

from sklearn.feature_extraction.text import CountVectorizer

 

vec = CountVectorizer(

    analyzer='word',            # tokenise by character ngrams

    max_features=4000,     # keep the most common 4000 ngrams,表示抽取最常见的4000个单词

 

#在x_train上提取词袋模型特征

vec.fit(x_train)  

 

classifier = MultinomialNB()

# vec.transform(x_train)转化训练集样本,转变之后矩阵维度是[n_samples, 4000]

classifier.fit(vec.transform(x_train), y_train)

 

#加入抽取2-gram和3-gram的统计特征

vec = CountVectorizer(

    analyzer='word',   # tokenise by character ngrams

    ngram_range=(1,4),  # use ngrams of size 1 and 2

max_features=20000,)  # keep the most common 1000 ngrams

 

更可靠的验证效果的方式是交叉验证,但是交叉验证最好保证每一份里面的样本类别也是相对均衡的,我们这里使用StratifiedKFold

from sklearn.cross_validation import StratifiedKFold

#x是训练数据,y是标签,train_index : test_index = 4:1

stratifiedk_fold = StratifiedKFold(y, n_folds=n_folds, shuffle=shuffle)

    for train_index, test_index in stratifiedk_fold:

        X_train, X_test = x[train_index], x[test_index]

        y_train = y[train_index]

转载于:https://www.cnblogs.com/yongfuxue/p/10118993.html

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
本demo实现的是基于bow原理对图片进行分类,并实现对选取得测试集进行查找 BoW(Bag of Words)词袋模型最初被用在文本分类中,将文档表示成特征矢量。它的基本思想是假定对于一个文本,忽略其词序和语法、句法,仅仅将其看做是一些词汇的集合,而文本中的每个词汇都是独立的。简单说就是讲每篇文档都看成一个袋子(因为里面装的都是词汇,所以称为词袋,Bag of words即因此而来),然后看这个袋子里装的都是些什么词汇,将其分类。如果文档中猪、马、牛、羊、山谷、土地、拖拉机这样的词汇多些,而银行、大厦、汽车、公园这样的词汇少些,我们就倾向于判断它是一篇描绘乡村的文档,而不是描述城镇的。 serachFeatures.py中,前面主要是一些通过parse使得可以在敲命令行的时候可以向里面传递参数,后面就是提取SIFT特征,然后聚类,计算TF和IDF,得到单词直方图后再做一下L2归一化。一般在一幅图像中提取的到SIFT特征点是非常多的,而如果图像库很大的话,SIFT特征点会非常非常的多,直接聚类是非常困难的(内存不够,计算速度非常慢),所以,为了解决这个问题,可以以牺牲检索精度为代价,在聚类的时候先对SIFT做降采样处理。最后对一些在在线查询时会用到的变量保存下来。对于某个图像库,我们可以在命令行里通过下面命令生成BoF。 query.py只能每次查找一张图片,并返回与之匹配度(递减)最接近的6张图片
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值