HDU 5965(三行扫雷 dp)

 

题意是在一个 3 行 n 列的图上进行扫雷,中间一行没有雷,且中间一行的每一格都会显示周围的雷数,问根据已知的雷数在上下两行设置地雷的方法数。

分析知每一列所填雷数的和与周围的雷数有关,但每列具体的填法只影响方法数,不影响周围的雷数统计,而且每列的雷数只有 0,1,2 这三种,

用数组 dp[ ] 来记录每列的雷数,用数组 a[ ] 来记录所给的信息( 每一列出现的周围雷数的统计 ),则:

dp[ pos ] = a[ pos - 1 ] - dp[ pos - 1 ] - dp[ pos - 2 ];

dp[ 0 ] = 0 

令 dp[ 1 ] = 0,用转移方程得到数组 dp[ ] 之后,对于每一列雷数和为 0 或 2 的情况,该列都只有一种填法,而对于每一列雷数和为 1 的情况,该列有两种填法,

用乘法原理可知:当 dp[ 1 ] = 0 时,ans =  pow(2, 单列雷数和为 1 的列数);

同理,再求出当 dp[ 1 ] = 1 和 dp[ 1 ] = 2 的 ans,答案即为三个 ans 的和,但要注意若在求解 dp[ ] 的过程中出现所填雷数已超过规定雷数的情况或者要填多于 2 的

雷数,则该情况下的 ans不能被求和 (事实上也无法正确求出 ans )

分析样例:22

i 的值分别取 0,1,2,则 dp[ 1 ] = {0,1,2},dp[ 2 ] 则分别填 2,1,0,

那么答案就是 sum = 1( dp[ 1 ] = 0, dp[ 2 ] = 2 ) + 4 ( dp[ 1 ] = 1, dp[ 2 ] = 1 ) + 1( dp[ 1 ] = 2, dp[ 2 ] = 0 ) = 6 

代码如下:

 1 #include <bits/stdc++.h>
 2 using namespace std;
 3 const int mod = 1e8+7;
 4 int main()
 5 {
 6     std::ios::sync_with_stdio(false);
 7     int t,len,pos,f,a[10005],dp[10005];
 8     long long ans,sum;
 9     string s;
10     cin >>t;
11     while(t--)
12     {
13         cin >> s;
14         len = s.length();
15         for(int i = 0; i < len; ++i)
16             a[i+1] = s[i] - '0';
17         sum = 0;
18         for(int i = 0; i <= a[1] && i <= 2; ++i)
19         {
20             ans = 1;
21             f = 1;
22             dp[0] = 0;
23             dp[1] = i;
24             for(pos = 2; pos <= len; ++pos)
25             {
26                 dp[pos] = a[pos-1] - dp[pos-1] - dp[pos-2];
27                 if(dp[pos]<0||dp[pos]>2)
28                 {
29                     f = 0;
30                     break;
31                 }
32             }
33             if(pos==len+1 && dp[len]+dp[len-1]!=a[len])
34                 f = 0;
35             if(f)
36             {
37                 for(int j = 1; j <= len; ++j)
38                     if(dp[j]==1) ans=ans*2%mod;
39                 sum = (ans+sum)%mod;
40             }
41         }
42         cout << sum << endl;
43     }
44     return 0;
45 }
View Code

 

感谢这些博客的作者:

与本题题解相关:

https://blog.csdn.net/elbadaernu/article/details/54773033

https://www.cnblogs.com/heimao5027/p/6033812.html

关于手动扩大栈内存(第二篇题解中涉及到这种用法,但本人的题解思路主要借鉴了第一篇题解):

https://blog.csdn.net/shahdza/article/details/6586430

https://blog.csdn.net/f_zyj/article/details/51467501

https://www.cnblogs.com/aininot260/p/9627100.html

关于GCC优化:

https://blog.csdn.net/u010796610/article/details/69352484

https://blog.csdn.net/jiayanhui2877/article/details/11615471

转载于:https://www.cnblogs.com/Taskr212/p/9742685.html

### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值