丑数

题目:

Ugly numbers are numbers whose only prime factors are 2, 3 or 5. The sequence 1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, ... shows the first 11 ugly numbers.

By convention, 1 is included. Write a program to find and print the 1500’th ugly number. Input There is no input to this program.

Output Output should consist of a single line as shown below, with ‘’ replaced by the number computed. Sample Output The 1500'th ugly number is .

解法1:

以前老师讲的方法,一个个把所有的丑数从小到大的得到

 1 #include <iostream>
 2 
 3 using namespace std;
 4 
 5 int min1 (int  a,int b)
 6 {
 7    return a<b?a:b ;
 8 }
 9 
10 int main()
11 {
12     long long a[1500];
13     a[0] = 1;
14     long long a2=0,a3=0,a5=0,min0;
15 
16     for(int i = 1;i<1500;i++)      
17     {
18         while(a[a2]*2 <= a[i-1])
19             a2++;
20         while(a[a3]*3 <= a[i-1])
21             a3++;
22         while(a[a5]*5 <= a[i-1])
23             a5++;
24         min0 = min1(min1(a[a2]*2,a[a3]*3),a[a5]*5);
25         a[i] = min0;
26 
27 
28     }
29 
30     cout<<"The 1500'th ugly number is "<<a[1499]<<'.'<<endl;
31 
32 
33     return 0;
34 }

解法2:

这是书上用STL的方法的代码

 1 #include <iostream>
 2 #include <vector>
 3 #include <queue>
 4 #include <set>
 5 #include <stdio.h>
 6 
 7 using namespace std;
 8 
 9 typedef long long LL;
10 
11 const int coeff[3] = {2,3,5};
12 
13 int main()
14 {
15     priority_queue<LL,vector<LL>,greater<LL> >pq;
16     set<LL>s;
17 
18     pq.push(1);
19     s.insert(1);
20 
21     for(int i = 1;;i++)
22     {
23         LL x = pq.top();pq.pop();
24         cout<<x<<"*"<<endl;
25         getchar();getchar();
26         if(i == 1500)
27         {
28             cout<<x<<"ssssss"<<endl;
29             break;
30         }
31 
32         for(int j = 0;j<3;j++)
33         {
34             LL x2 = x * coeff[j];
35             cout<<x2<<"#"<<endl;
36             getchar();getchar();
37             if(!s.count(x2)){ s.insert(x2);pq.push(x2); }
38         }
39     }
40 
41     return 0;
42 }

 

转载于:https://www.cnblogs.com/a2985812043/p/7193292.html

<think>好的,我现在需要帮助用户解决关于C++中丑数算法实现的问题。首先,我得理解什么是丑数。根据用户提供的引用内容,丑数是只包含质因子2、3和5的数,比如1, 2, 3, 4, 5, 6, 8等,而7、14则不是,因为它们有质因子7。用户还给出了几个不同的实现方法,我需要结合这些引用来整理出一个清晰的回答。 首先,我需要确认用户的需求。用户可能想要一个高效的算法来生成第n个丑数,或者判断一个数是否是丑数。根据引用中的不同代码示例,比如直接判断每个数的质因子,或者使用动态规划的方法生成丑数,我需要比较这些方法的优劣,并给出建议。 引用[2]中的代码似乎是通过遍历每个可能的因子来判断是否是丑数,但这种方法可能效率不高,尤其是当数较大时。而引用[3]和[4]提到的动态规划方法,利用已有的丑数生成后续的丑数,这种方法更高效,时间复杂度为O(n),适合生成较大的丑数。例如,剑指Offer中的题目应该采用这种方法。 接下来,我需要将这些方法整理成步骤,用中文解释清楚。例如,动态规划方法维护三个指针(或索引),分别对应乘以2、3、5的位置,每次选择最小的结果作为下一个丑数,并更新相应的指针。这种方法避免了对每个数进行质因子分解,从而提高了效率。 另外,用户可能还关心如何判断一个数是否是丑数。这时候需要不断除以2、3、5,直到无法整除,然后判断结果是否为1。如果是,则为丑数,否则不是。引用[2]中的代码可能在这方面有涉及,但需要检查是否有错误。比如,用户提供的代码中的循环条件可能需要调整,比如在判断因子时是否正确排除了其他质因子。 需要注意引用中的代码可能存在错误或不够优化的情况。例如,引用[2]中的循环可能没有正确处理所有情况,导致错误判断。因此,在回答中需要指出正确的方法,并给出示例代码。 最后,生成相关问题时要考虑用户可能进一步想知道的内容,比如动态规划方法的原理、时间复杂度分析,或者如何优化判断丑数的过程。这些问题可以帮助用户更深入地理解丑数的实现和应用。 总结步骤: 1. 定义丑数的概念,确保准确无误。 2. 介绍判断一个数是否为丑数的方法,给出正确代码示例。 3. 详细解释动态规划方法生成第n个丑数的步骤,包括指针的使用和更新。 4. 对比不同方法的优缺点,指出动态规划的高效性。 5. 根据引用资料中的代码示例,指出可能的错误或优化点。 6. 生成相关问题,引导用户进一步学习。</think>### C++实现丑数算法详解 #### 一、丑数的定义 丑数(Ugly Number)是**只包含质因子2、3、5的正整数**,例如$1,2,3,4,5,6,8,9,10$,但$7,14$不是丑数(包含质因子7)[^4]。 --- #### 二、判断单个数字是否为丑数 **算法步骤**: 1. 若输入数$n \leq 0$,直接返回`false` 2. 循环除以2,直到无法整除 3. 循环除以3,直到无法整除 4. 循环除以5,直到无法整除 5. 若最终结果为1,则是丑数,否则不是 **C++代码示例**: ```cpp bool isUgly(int n) { if (n <= 0) return false; while (n % 2 == 0) n /= 2; while (n % 3 == 0) n /= 3; while (n % 5 == 0) n /= 5; return n == 1; } ``` --- #### 三、生成第n个丑数(动态规划法) **算法核心**:利用已有丑数生成新的丑数,避免重复计算[^3] **步骤**: 1. 初始化数组`dp`,`dp[0]=1` 2. 定义三个指针`p2,p3,p5`,初始指向0 3. 计算三个候选值:`dp[p2]*2`, `dp[p3]*3`, `dp[p5]*5` 4. 选择最小值作为新丑数,并移动对应指针 5. 重复直到生成第n个丑数 **时间复杂度**:$O(n)$ **C++代码示例**: ```cpp int nthUglyNumber(int n) { vector<int> dp(n, 1); int p2 = 0, p3 = 0, p5 = 0; for (int i = 1; i < n; ++i) { int next2 = dp[p2] * 2, next3 = dp[p3] * 3, next5 = dp[p5] * 5; dp[i] = min(next2, min(next3, next5)); if (dp[i] == next2) p2++; if (dp[i] == next3) p3++; if (dp[i] == next5) p5++; } return dp[n-1]; } ``` --- #### 四、性能对比 | 方法 | 时间复杂度 | 适用场景 | |----------------|-------------|------------------| | 直接判断法 | $O(\log n)$ | 单次判断 | | 动态规划法 | $O(n)$ | 生成序列 | ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值