给定一个三角形,找出自顶向下的最小路径和。每一步只能移动到下一行中相邻的结点上。
例如,给定三角形:
[ [2], [3,4], [6,5,7], [4,1,8,3] ]
自顶向下的最小路径和为 11
(即,2 + 3 + 5 + 1 = 11)。
思想:从最底层向上找最短路径,下面给出两种解法,一维数组和二维数组两种解法,但是思想都是一样的。
一维数组解法:
public int minimumTotal(List<List<Integer>> list) { if(list.size() == 0 || list == null) return 0; int len = list.size(); int[] dp = new int[len+1]; for(int i = len-1;i>=0;i--){ List<Integer> l = list.get(i); for(int j = 0;j<l.size();j++){ //dp[j]表示上一层的,然后在赋给当前层 dp[j] = Math.min(dp[j],dp[j+1])+l.get(j); } } return dp[0]; }
二维数组解法:
public int minimumTotal(List<List<Integer>> list) { int len = list.size(); int[][] arr = new int[len+1][len+1]; for(int i = len-1;i>=0;i--) { List<Integer> l = list.get(i); for (int j = 0; j < l.size(); j++) { arr[i][j] = Math.min(arr[i+1][j], arr[i+1][j + 1]) + l.get(j); } } return arr[0][0]; }