二叉树的四种遍历方式

二叉树的四种遍历方式:

  • 二叉树的遍历(traversing binary tree)是指从根结点出发,按照某种次序依次访问二叉树中所有的结点,使得每个结点被访问依次且仅被访问一次。
    四种遍历方式分别为:先序遍历、中序遍历、后序遍历、层序遍历。

 

遍历之前,我们首先介绍一下,如何创建一个二叉树,在这里博主宝宝用的是先建左树在建右树的方法,

首先要声明结点TreeNode类,代码如下:

public class TreeNode {
    public int data;
    public TreeNode leftChild;
    public TreeNode rightChild;

    public TreeNode(int data){
        this.data = data;
    }

}

再来创建一颗二叉树:

/**
     * 构建二叉树
     * @param list   输入序列
     * @return
     */
    public static TreeNode createBinaryTree(LinkedList<Integer> list){
        TreeNode node = null;
        if(list == null || list.isEmpty()){
            return null;
        }
        Integer data = list.removeFirst();
        if(data!=null){
            node = new TreeNode(data);
            node.leftChild = createBinaryTree(list);
            node.rightChild = createBinaryTree(list);
        }
        return node;
    }

接下来博主宝宝按照上面列的顺序一一讲解,

首先来看先序遍历,所谓的先序遍历就是先访问根节点,在访问左节点,最后访问右节点,

如上图所示,前序遍历结果为:ABDFECGHI

实现代码如下:

/**
     * 二叉树前序遍历   根-> 左-> 右
     * @param node    二叉树节点
     */
    public static void preOrderTraveral(TreeNode node){
        if(node == null){
            return;
        }
        System.out.print(node.data+" ");
        preOrderTraveral(node.leftChild);
        preOrderTraveral(node.rightChild);
    }

再者就是中序遍历,所谓的中序遍历就是先访问左节点,再访问根节点,最后访问右节点,

如上图所示,前序遍历结果为:DBEFAGHCI

实现代码如下:

/**
     * 二叉树中序遍历   左-> 根-> 右
     * @param node   二叉树节点
     */
    public static void inOrderTraveral(TreeNode node){
        if(node == null){
            return;
        }
        inOrderTraveral(node.leftChild);
        System.out.print(node.data+" ");
        inOrderTraveral(node.rightChild);
    }

最后就是中序遍历,所谓的中序遍历就是先访问左节点,再访问右节点,最后访问根节点。

如上图所示,前序遍历结果为:DEFBHGICA

实现代码如下:

/**
     * 二叉树后序遍历   左-> 右-> 根
     * @param node    二叉树节点
     */
    public static void postOrderTraveral(TreeNode node){
        if(node == null){
            return;
        }
        postOrderTraveral(node.leftChild);
        postOrderTraveral(node.rightChild);
        System.out.print(node.data+" ");
    }

讲完上面三种非递归的方法,下面博主宝宝再给大家讲讲非递归是如何实现前中后序遍历的

还是一样,先看非递归前序遍历

  1. 首先申请一个新的栈,记为stack;
  2. 声明一个结点treeNode,让其指向node结点;
  3. 如果treeNode的不为空,将treeNode的值打印,并将treeNode入栈,然后让treeNode指向treeNode的右结点,
  4. 重复步骤3,直到treenode为空;
  5. 然后出栈,让treeNode指向treeNode的右孩子
  6. 重复步骤3,直到stack为空.

实现代码如下:

public static void preOrderTraveralWithStack(TreeNode node){
        Stack<TreeNode> stack = new Stack<TreeNode>();
        TreeNode treeNode = node;
        while(treeNode!=null || !stack.isEmpty()){
            //迭代访问节点的左孩子,并入栈
            while(treeNode != null){
                System.out.print(treeNode.data+" ");
                stack.push(treeNode);
                treeNode = treeNode.leftChild;
            }
            //如果节点没有左孩子,则弹出栈顶节点,访问节点右孩子
            if(!stack.isEmpty()){
                treeNode = stack.pop();
                treeNode = treeNode.rightChild;
            }
        }
    }

中序遍历非递归,博主宝宝在此不过多叙述具体步骤了,

具体过程:

  1. 申请一个新栈,记为stack,申请一个变量cur,初始时令treeNode为头节点;
  2. 先把treeNode节点压入栈中,对以treeNode节点为头的整棵子树来说,依次把整棵树的左子树压入栈中,即不断令treeNode=treeNode.leftChild,然后重复步骤2;
  3. 不断重复步骤2,直到发现cur为空,此时从stack中弹出一个节点记为treeNode,打印node的值,并让treeNode= treeNode.right,然后继续重复步骤2;
  4. 当stack为空并且cur为空时结束。
public static void inOrderTraveralWithStack(TreeNode node){
        Stack<TreeNode> stack = new Stack<TreeNode>();
        TreeNode treeNode = node;
        while(treeNode!=null || !stack.isEmpty()){
            while(treeNode != null){
                stack.push(treeNode);
                treeNode = treeNode.leftChild;
            }
            if(!stack.isEmpty()){
                treeNode = stack.pop();
                System.out.print(treeNode.data+" ");
                treeNode = treeNode.rightChild;
            }

        }
    }

后序遍历非递归实现,后序遍历这里较前两者实现复杂一点,我们需要一个标记为来记忆我们此时节点上一个节点,具体看代码注释

public static void postOrderTraveralWithStack(TreeNode node){
        Stack<TreeNode> stack = new Stack<TreeNode>();
        TreeNode treeNode = node;
        TreeNode lastVisit = null;   //标记每次遍历最后一次访问的节点
        while(treeNode!=null || !stack.isEmpty()){//节点不为空,结点入栈,并且指向下一个左孩子
            while(treeNode!=null){
                stack.push(treeNode);
                treeNode = treeNode.leftChild;
            }
            //栈不为空
            if(!stack.isEmpty()){
                //出栈
                treeNode = stack.pop();
                /**
                 * 这块就是判断treeNode是否有右孩子,
                 * 如果没有输出treeNode.data,让lastVisit指向treeNode,并让treeNode为空
                 * 如果有右孩子,将当前节点继续入栈,treeNode指向它的右孩子,继续重复循环
                 */
                if(treeNode.rightChild == null || treeNode.rightChild == lastVisit) {
                    System.out.print(treeNode.data + " ");
                    lastVisit = treeNode;
                    treeNode  = null;
                }else{
                    stack.push(treeNode);
                    treeNode = treeNode.rightChild;
                }

            }

        }
    }

最后博主宝宝再给大家介绍一下层序遍历

具体步骤如下:

  1. 首先申请一个新的队列,记为queue;
  2. 将头结点head压入queue中;
  3. 每次从queue中出队,记为node,然后打印node值,如果node左孩子不为空,则将左孩子入队;如果node的右孩子不为空,则将右孩子入队;
  4. 重复步骤3,直到queue为空。

实现代码如下:

public static void levelOrder(TreeNode root){
        LinkedList<TreeNode> queue = new LinkedList<>();
        queue.add(root);
        while(!queue.isEmpty()){
            root = queue.pop();
            System.out.print(root.data+" ");
            if(root.leftChild!=null) queue.add(root.leftChild);
            if(root.rightChild!=null) queue.add(root.rightChild);
        }
    }

 

转载于:https://www.cnblogs.com/du001011/p/11229170.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值