hdu 4712 Hamming Distance(随机函数暴力)

本文介绍了一种利用随机函数求解多个十六进制字符串间最小汉明距离的方法。通过将十六进制字符串转换为二进制,并计算每对字符串间的汉明距离,采用大量随机比较的方式找到最小值。此方法适用于字符串长度较短的情况,通过增加随机次数提高找到真正最小值的概率。
摘要由CSDN通过智能技术生成

http://acm.hdu.edu.cn/showproblem.php?pid=4712

Hamming Distance

Time Limit: 6000/3000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others)
Total Submission(s): 797    Accepted Submission(s): 284

Problem Description
(From wikipedia) For binary strings a and b the Hamming distance is equal to the number of ones in a XOR b. For calculating Hamming distance between two strings a and b, they must have equal length.
Now given N different binary strings, please calculate the minimum Hamming distance between every pair of strings.
Input
The first line of the input is an integer T, the number of test cases.(0<T<=20) Then T test case followed. The first line of each test case is an integer N (2<=N<=100000), the number of different binary strings. Then N lines followed, each of the next N line is a string consist of five characters. Each character is '0'-'9' or 'A'-'F', it represents the hexadecimal code of the binary string. For example, the hexadecimal code "12345" represents binary string "00010010001101000101".
Output
For each test case, output the minimum Hamming distance between every pair of strings.
Sample Input
2
2
12345
54321
4
12345
6789A
BCDEF
0137F
Sample Output
6
7
Source
 
【题解】:
  随机函数(没节操)暴力,(网上有大神这么水过的)
  一开始看到rand随机,就觉得真没节操,后来想了想,这题确实可以这么做,因为字符串长度只有5,所以答案肯定在0-20之间,而随机次数越多得到的答案就是最小值的机会也就越大,所以要尽量在保证不超时的前提下,增加尽量多的随机次数
 
【code】:
 1 #include <iostream>
 2 #include <stdio.h>
 3 #include <algorithm>
 4 #include <string.h>
 5 #include <time.h>
 6 
 7 using namespace std;
 8 #define N 100000
 9 
10 char str[N+10][10];
11 int mark[20][20];  //make中存 i^j 的1的个数
12 int arr[]={0,1,1,2,1,2,2,3,1,2,2,3,2,3,3,4};  //0-F 中1的个数
13 
14 int charToHex(char ch)  //将0-F字符转换成10进制数计算
15 {
16     if(isdigit(ch)) return ch-'0';
17     return ch-'A'+10;
18 }
19 
20 void getMark() //求mark数组
21 {
22     int i,j,s;
23     for(i=0;i<16;i++)
24     {
25         for(j=i;j<16;j++)
26         {
27             s=i^j;
28             mark[i][j]=mark[j][i]=arr[s];
29         }
30     }
31 }
32 
33 int geths(int x,int y) //求x到y的Hamming distance
34 {
35     int i,sum=0;
36     for(i=0;i<5;i++)
37     {
38         int xx = charToHex(str[x][i]);
39         int yy = charToHex(str[y][i]);
40         sum+=mark[xx][yy];
41     }
42     return sum;
43 }
44 
45 int main()
46 {
47     int t;
48     getMark();
49     scanf("%d",&t);
50     while(t--)
51     {
52         int n;
53         scanf("%d",&n);
54         int i;
55         for(i=0;i<n;i++)
56         {
57             scanf("%s",str[i]);
58         }
59         srand(time(NULL));
60         int x,y,mins=100;
61         for(i=0;i<900000;i++) //随机900000次基本能过,在不超时的前提下,随机次数越多越好
62         {
63             x=rand()%n;
64             y=rand()%n;
65             if(x==y)    continue;
66             int temp = geths(x,y);
67             if(mins>temp)   mins=temp;
68         }
69         printf("%d\n",mins);
70     }
71     return 0;
72 }
73 /*
74 2
75 2
76 12345
77 54321
78 4
79 12345
80 6789A
81 BCDEF
82 0137F
83 */

 

转载于:https://www.cnblogs.com/crazyapple/p/3310859.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值