Codeforces Round #457 (Div. 2) B

B. Jamie and Binary Sequence (changed after round)
time limit per test
2 seconds
memory limit per test
256 megabytes
input
standard input
output
standard output

Jamie is preparing a Codeforces round. He has got an idea for a problem, but does not know how to solve it. Help him write a solution to the following problem:

Find k integers such that the sum of two to the power of each number equals to the number n and the largest integer in the answer is as small as possible. As there may be multiple answers, you are asked to output the lexicographically largest one.

To be more clear, consider all integer sequence with length k (a1, a2, ..., ak) with . Give a value  to each sequence. Among all sequence(s) that have the minimum y value, output the one that is the lexicographically largest.

For definitions of powers and lexicographical order see notes.

Input

The first line consists of two integers n and k (1 ≤ n ≤ 1018, 1 ≤ k ≤ 105) — the required sum and the length of the sequence.

Output

Output "No" (without quotes) in a single line if there does not exist such sequence. Otherwise, output "Yes" (without quotes) in the first line, and k numbers separated by space in the second line — the required sequence.

It is guaranteed that the integers in the answer sequence fit the range [ - 1018, 1018].

Examples
input
Copy
23 5
output
Yes
3 3 2 1 0
input
Copy
13 2
output
No
input
Copy
1 2
output
Yes
-1 -1
Note

Sample 1:

23 + 23 + 22 + 21 + 20 = 8 + 8 + 4 + 2 + 1 = 23

Answers like (3, 3, 2, 0, 1) or (0, 1, 2, 3, 3) are not lexicographically largest.

Answers like (4, 1, 1, 1, 0) do not have the minimum y value.

Sample 2:

It can be shown there does not exist a sequence with length 2.

Sample 3:

Powers of 2:

If x > 0, then 2x = 2·2·2·...·2 (x times).

If x = 0, then 2x = 1.

If x < 0, then .

Lexicographical order:

Given two different sequences of the same length, (a1, a2, ... , ak) and (b1, b2, ... , bk), the first one is smaller than the second one for the lexicographical order, if and only if ai < bi, for the first i where ai and bi differ.

题意  将一个数n分解成k项 2^a 次幂相加的形式 n=2^a1+2^a2+...+2^ak 那么我们可以得到一个序列a,a中可以有相等的项。求最大值a(max)最小,同时,字典序最大的序列a

解析  用二进制来做,首先要满足最大值最小 如果把当前最大值全部分解为最下一项 时 项数小于等于k 那么就把它分解掉 直到不满足这一条件,因为最大值部分分解掉 a(max)并没有变小

这时候我们就要满足字典序最大,开始分解最小的那一项。

AC代码

#include <stdio.h>
#include <math.h>
#include <string.h>
#include <stdlib.h>
#include <iostream>
#include <sstream>
#include <algorithm>
#include <string>
#include <queue>
#include <map>
#include <vector>
using namespace std;
const int maxn = 1e5+10;
const int maxm = 1e4+10;
const int inf = 0x3f3f3f3f;
const double epx = 1e-10;
typedef long long ll;
const ll INF = 1e18;
int ans[maxn];
int main()
{
    map<int,int> ma;
    ll n,k;
    cin>>n>>k;
    priority_queue<int,vector<int>,greater<int> > q;
    int cnt=0,sum=0;
    while(n!=0)
    {
        int s=n&1;
        if(s==1)
            ma[cnt]++,sum++;
        cnt++;
        n=n>>1;
    }
    if(k<sum)
        printf("No\n");
    else
    {
        printf("Yes\n");
        int i;
        for(i=64;k!=sum;i--)
        {
            if(ma[i]<=k-sum)
            {
                ma[i-1]+=ma[i]*2;
                sum+=ma[i];
                ma[i]=0;
            }
            else
            {
                break;
            }
        }
        for(int j=-100005;j<=64;j++)
        {
            while(ma[j]--)
            {
                q.push(j);
            }
        }
        if(sum!=k)
        {
            while(sum!=k)
            {
                int temp=q.top();
                q.pop();
                q.push(temp-1),q.push(temp-1);
                sum++;
            }
        }
        int cnt=0;
        while(!q.empty())
        {
            ans[cnt++]=q.top();
            q.pop();
        }
        for(int i=cnt-1;i>=1;i--)
            cout<<ans[i]<<" ";
        cout<<ans[0]<<endl;
    }
}

 

转载于:https://www.cnblogs.com/stranger-/p/8542250.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值