给定 n 个非负整数 a1,a2,...,an,每个数代表坐标中的一个点 (i, ai) 。在坐标内画 n 条垂直线,垂直线 i 的两个端点分别为 (i, ai) 和 (i, 0)。找出其中的两条线,使得它们与 x 轴共同构成的容器可以容纳最多的水。输入数组 [1,8,6,2,5,4,8,3,7]。在此情况下,容器能够容纳水(表示为蓝色部分)的最大值为 49。
第一遍用暴力解法:
class Solution { public: int maxArea(vector<int>& height) { int max = 0; for(int i =0; i<height.size(); i++) { for (int j =i+1;j < height.size(); j++){ int h = min(height[i], height[j]); if(h*(j-i) > max) max = h*(j-i); } } return max; } };
方法2:
有人说水的最大体积由最长木板决定,只有移动短的木板那头,才有可能使得水
的体积变大。好像称作双指针。
class Solution { public: int maxArea(vector<int>& height) { int left = 0; int right = height.size()-1; int region = right * min(height[0], height[right]); while(left < right) { region = max(region, (right-left) * min(height[right], height[left])); //cout << left << "," << right << " "; if(height[left] < height[right] ) { left++; } else { right--; } } return region; } };