插入排序是简单排序的一种,也是基于“减治法”思想的一种算法,减治法有3种变形:
- 减去一个常量;
- 减去一个常量因子;
- 减去的规模是可变的。
插入排序算法的时间复杂度和冒泡、选择排序算法一样也是o(n²),常见的基于插入排序算法思想的排序算法有:
- 直接插入排序算法;
- 折半插入排序算法;
- 希尔排序算法。(查看)
插入的方法一共有三种:
- 我们可以从左向右扫描序列,找到合适的位置插入;
- 我们可以从右向左扫描序列,找到合适的位置插入;
- 对于有序序列我们可以使用折半查找到合适的位置插入。
对于未知是否有序的数组,我们一般采用第二种方法从后往前扫描,它可以在比较的过程中往后移动腾空位置,比第一种要少做一次循环,效率比同种情况下的从前往后扫描更高,这一点可以去验证一下。
一、直接插入排序算法:
1、描述:假定在有序数组A[0...n-2]后面插入一个元素A
n-1
,也就是把A[n-1]位置的
移动到它合适的位置去,可以从后往前扫描,直到遇到第一个小于等于它的元素,然后把它插入到该元素的后面。
2、C语言代码实现
#include <stdio.h>
void directlyinsertSort(int a[],int n);
int main()
{
int a[] = {6,3,8,7,3,0,9,-3,15,4};
int k = 0;
directlyinsertSort(a,10);
for(;k<10;k++)
{
printf("%4d",a[k]);
}
return 0;
}
void directlyinsertSort(int a[],int n)
{
int temp = 0;
int i,j;
for(i=1;i<n;i++)
{
if(a[i]<a[i-1])
{
temp = a[i];
j = i;
do{
a[j] = a[j-1];
j--;
}while(j>0&&a[j-1]>temp);
a[j] = temp;
}
}
}
3、Java代码实现
上述代码中使用了temp变量临时存放需要插入的元素,这样在while比较语句中
(j>0&&a[j-1]>temp)
就需要判断两次,对于庞大的数据量,这样做消耗非常大,于是我们可以使用a[0]的位置来充当这个临时存放,改进的代码如下:
public static void insertSort0405(int[] a){
int temp;
int j;
for(int i=1;i<a.length;i++){
if(a[i]<a[i-1]){
temp = a[i];
j = i;
do{
a[j] = a[j-1];
j--;
}while(j>0&&a[j-1]>temp);
a[j] = temp;
}
}
}
4、一点优化
#include <stdio.h>
void optimizeDirectlyInsertSort(int a[],int n);
int main()
{
int a[] = {0,6,3,8,7,3,0,9,-3,15,4};
int k = 0;
optimizeDirectlyInsertSort(a,10);
for(k=1;k<=10;k++)
{
printf("%4d",a[k]);
}
return 0;
}
void optimizeDirectlyInsertSort(int a[],int n)
{
int i,j;
for(i=2;i<=n;i++)
{
if(a[i]<a[i-1])
{
a[0] = a[i];
j = i-1;
do{
a[j+1] = a[j];
j--;
}while(a[0]<a[j]);
a[j+1] = a[0];
}
}
}
二、折半插入排序算法
1、描述:折半插入排序算法的使用是有前提的,就是必须是有序数组。它是指在一个有序序列中插入一个元素形成一个心得有序序列。在有序序列中进行查找,折半思想也是最有效的方法。折半查找设置三个下标low、high和mid,设置low的值为1,high为n-1,mid的值为(low+high)/2,然后将要插入的元素与mid下标元素进行比较。若小于mid下标元素,那么high=mid-1,low值不变,若大于mid下标元素,则low=mid+1,high值不变;若等于mid那么查找成功插入之。
2、C语言代码实现
#include <stdio.h>
void halfInsertSort(int a[],int n);
int main()
{
int a[] = {0,1,2,3,4,6,7,8,9,10,5};
int k = 0;
halfInsertSort(a,10);
for(k=1;k<=10;k++)
{
printf("%4d",a[k]);
}
return 0;
}
void halfInsertSort(int a[],int n)
{
int low,mid,high;
int i,j,m;
for(i=2;i<=n;i++)
{
a[0] = a[i];
low = 1;
high = i -1;
while(low<=high)
{
m = (low+high)/2;
if(a[0]<a[m])
{
high = m -1;
}else low = m + 1;
}
for(j=i-1;j>=high;j--)
{
a[j+1] = a[j];
}
a[high+1] = a[0];
}
}