[LeetCode]53. Happy Number快乐数

Write an algorithm to determine if a number is "happy".

A happy number is a number defined by the following process: Starting with any positive integer, replace the number by the sum of the squares of its digits, and repeat the process until the number equals 1 (where it will stay), or it loops endlessly in a cycle which does not include 1. Those numbers for which this process ends in 1 are happy numbers.

Example: 19 is a happy number

  • 12 + 92 = 82
  • 82 + 22 = 68
  • 62 + 82 = 100
  • 12 + 02 + 02 = 1

Credits:
Special thanks to @mithmatt and @ts for adding this problem and creating all test cases.

Subscribe to see which companies asked this question

 
这道题定义了一种快乐数,就是说对于某一个正整数,如果对其各个位上的数字分别平方,然后再加起来得到一个新的数字,再进行同样的操作,如果最终结果变成了1,则说明是快乐数,如果一直循环但不是1的话,就不是快乐数。
 
解法1:可以发现,任意一个大于1的数执行上述循环过程若干次后,都会得到一个小于等于10的数。因此我们先算出[0,10]之间哪些是快乐数并保存下来,然后对输入数字不断进行上述过程循环,直至小于等于10,再判断即可。
class Solution {
public:
    bool isHappy(int n) {
        vector<bool> yes = {false, true, false, false, false, false, false, true, false, false, true};
        while(n > 10)
        {
            int num = 0;
            string s = to_string(n);
            for(int i = 0; i < s.size(); ++i)
                num += (int)pow(s[i] - '0', 2);
            n = num;
        }
        return yes[n];
    }
};

 

解法2:根据定义,一个数经过上述循环过程,要么得到1退出,要么无限循环下去。可以发现,无限循环下去的情况会是在若干次循环过程中,某两次得到了不为1的相同数字。因此可以将循环过程中得到的数字存下来,再下一次循环后得到的数字与前面的进行比较,若出现过则终止循环并与1进行比较。

class Solution {
public:
    bool isHappy(int n) {
        unordered_map<int, int> m;
        while(n != 1)
        {
            int num = 0;
            string s = to_string(n);
            for(int i = 0; i < s.size(); ++i)
                num += (int)pow(s[i] - '0', 2);
            n = num;
            if(m.find(n) != m.end()) break;
            else ++m[n];
        }
        return n == 1;
    }
};

 

转载于:https://www.cnblogs.com/aprilcheny/p/4930174.html

内容概要:本文围绕六自由度机械臂的人工神经网络(ANN)设计展开,重点研究了正向与逆向运动学求解、正向动力学控制以及基于拉格朗日-欧拉法推导逆向动力学方程,并通过Matlab代码实现相关算法。文章结合理论推导与仿真实践,利用人工神经网络对复杂的非线性关系进行建模与逼近,提升机械臂运动控制的精度与效率。同时涵盖了路径规划中的RRT算法与B样条优化方法,形成从运动学到动力学再到轨迹优化的完整技术链条。; 适合人群:具备一定机器人学、自动控制理论基础,熟悉Matlab编程,从事智能控制、机器人控制、运动学六自由度机械臂ANN人工神经网络设计:正向逆向运动学求解、正向动力学控制、拉格朗日-欧拉法推导逆向动力学方程(Matlab代码实现)建模等相关方向的研究生、科研人员及工程技术人员。; 使用场景及目标:①掌握机械臂正/逆运动学的数学建模与ANN求解方法;②理解拉格朗日-欧拉法在动力学建模中的应用;③实现基于神经网络的动力学补偿与高精度轨迹跟踪控制;④结合RRT与B样条完成平滑路径规划与优化。; 阅读建议:建议读者结合Matlab代码动手实践,先从运动学建模入手,逐步深入动力学分析与神经网络训练,注重理论推导与仿真实验的结合,以充分理解机械臂控制系统的设计流程与优化策略。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值