查准率和查全率是信息检索效率评价的两个定量指标,不仅可以用来评价每次检索的准确性和全面性,也是在信息检索系统评价中衡量系统检索性能的重要方面。
查准率(Precision ratio,简称为P),是指检出的相关文献数占检出文献总数的百分比。查准率反映检索准确性,其补数就是误检率。
查全率(Recall ratio,简称为R),是指检出的相关文献数占系统中相关文献总数的百分比。查全率反映检索全面性,其补数就是漏检率。
查全率=(检索出的相关信息量/系统中的相关信息总量)*100%
查准率=(检索出的相关信息量/检索出的信息总量)*100%
前者是衡量检索系统和检索者检出相关信息的能力,后者是衡量检索系统和检索者拒绝非相关信息的能力。两者合起来,即表示检索效率。
利用查准率和查全率指标,可以对每一次检索进行检索效率的评价,为检索的改进调整提供依据。利用这两个量化指标,也可以对信息检索系统的性能水平进行评价。要评价信息检索系统的性能水平,就必须在一个检索系统中进行多次检索。每进行一次检索,都计算其查准率和查全率,并以此作为坐标值,在平面坐标图上标示出来。通过大量的检索,就可以得到检索系统的性能曲线。实验证明,在查全率和查准率之间存在着相反的相互依赖关系--如果提高输出的查全率,就会降低其查准率,反之亦然。
网上源码有很多,这里找到了一个是Stefan Schroedl写的,跟大家分享一下:
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
|
function
[prec, tpr, fpr, thresh] = prec_rec(score, target, varargin)
% PREC_REC - Compute and plot precision/recall and ROC curves.
%
% PREC_REC(SCORE,TARGET), where SCORE and TARGET are equal-sized vectors,
% and TARGET is binary, plots the corresponding precision-recall graph
% and the ROC curve.
%
% Several options of the form PREC_REC(...,'OPTION_NAME', OPTION_VALUE)
% can be used to modify the default behavior.
% - 'instanceCount': Usually it is assumed that one line in the input
% data corresponds to a single sample. However, it
% might be the case that there are a total of N
% instances with the same SCORE, out of which
% TARGET are classified as positive, and (N -
% TARGET) are classified as negative. Instead of
% using repeated samples with the same SCORE, we
% can summarize these observations by means of this
% option. Thus it requires a vector of the same
% size as TARGET.
% - 'numThresh' : Specify the (maximum) number of score intervals.
% Generally, splits are made such that each
% interval contains about the same number of sample
% lines.
% - 'holdFigure' : [0,1] draw into the current figure, instead of
% creating a new one.
% - 'style' : Style specification for plot command.
% - 'plotROC' : [0,1] Explicitly specify if ROC curve should be
% plotted.
% - 'plotPR' : [0,1] Explicitly specify if precision-recall curve
% should be plotted.
% - 'plotBaseline' : [0,1] Plot a baseline of the random classifier.
%
% By default, when output arguments are specified, as in
% [PREC, TPR, FPR, THRESH] = PREC_REC(...),
% no plot is generated. The arguments are the score thresholds, along
% with the respective precisions, true-positive, and false-positive
% rates.
%
% Example:
%
% x1 = rand(1000, 1);
% y1 = round(x1 + 0.5*(rand(1000,1) - 0.5));
% prec_rec(x1, y1);
% x2 = rand(1000,1);
% y2 = round(x2 + 0.75 * (rand(1000,1)-0.5));
% prec_rec(x2, y2, 'holdFigure', 1);
% legend('baseline','x1/y1','x2/y2','Location','SouthEast');
% Copyright @ 9/22/2010 Stefan Schroedl
% Updated 3/16/2010
optargin = size(varargin, 2);
stdargin = nargin - optargin;
if
stdargin < 2
error(
'at least 2 arguments required'
);
end
% parse optional arguments
num_thresh = -1;
hold_fig = 0;
plot_roc = (nargout <= 0);
plot_pr = (nargout <= 0);
instance_count = -1;
style =
''
;
plot_baseline = 1;
i = 1;
while
(i <= optargin)
if
(strcmp(varargin{i},
'numThresh'
))
if
(i >= optargin)
error(
'argument required for %s'
, varargin{i});
else
num_thresh = varargin{i+1};
i = i + 2;
end
elseif
(strcmp(varargin{i},
'style'
))
if
(i >= optargin)
error(
'argument required for %s'
, varargin{i});
else
style = varargin{i+1};
i = i + 2;
end
elseif
(strcmp(varargin{i},
'instanceCount'
))
if
(i >= optargin)
error(
'argument required for %s'
, varargin{i});
else
instance_count = varargin{i+1};
i = i + 2;
end
elseif
(strcmp(varargin{i},
'holdFigure'
))
if
(i >= optargin)
error(
'argument required for %s'
, varargin{i});
else
if
~isempty(get(0,
'CurrentFigure'
))
hold_fig = varargin{i+1};
end
i = i + 2;
end
elseif
(strcmp(varargin{i},
'plotROC'
))
if
(i >= optargin)
error(
'argument required for %s'
, varargin{i});
else
plot_roc = varargin{i+1};
i = i + 2;
end
elseif
(strcmp(varargin{i},
'plotPR'
))
if
(i >= optargin)
error(
'argument required for %s'
, varargin{i});
else
plot_pr = varargin{i+1};
i = i + 2;
end
elseif
(strcmp(varargin{i},
'plotBaseline'
))
if
(i >= optargin)
error(
'argument required for %s'
, varargin{i});
else
plot_baseline = varargin{i+1};
i = i + 2;
end
elseif
(~ischar(varargin{i}))
error(
'only two numeric arguments required'
);
else
error(
'unknown option: %s'
, varargin{i});
end
end
[nx,ny]=size(score);
if
(nx~=1 && ny~=1)
error(
'first argument must be a vector'
);
end
[mx,my]=size(target);
if
(mx~=1 && my~=1)
error(
'second argument must be a vector'
);
end
score = score(:);
target = target(:);
if
(length(target) ~= length(score))
error(
'score and target must have same length'
);
end
if
(instance_count == -1)
% set default for total instances
instance_count = ones(length(score),1);
target = max(min(target(:),1),0);
% ensure binary target
else
if
numel(instance_count)==1
% scalar
instance_count = instance_count * ones(length(target), 1);
end
[px,py] = size(instance_count);
if
(px~=1 && py~=1)
error(
'instance count must be a vector'
);
end
instance_count = instance_count(:);
if
(length(target) ~= length(instance_count))
error(
'instance count must have same length as target'
);
end
target = min(instance_count, target);
end
if
num_thresh < 0
% set default for number of thresholds
score_uniq = unique(score);
num_thresh = min(length(score_uniq), 100);
end
qvals = (1:(num_thresh-1))/num_thresh;
thresh = [min(score) quantile(score,qvals)];
% remove identical bins
thresh = sort(unique(thresh),2,
'descend'
);
total_target = sum(target);
total_neg = sum(instance_count - target);
prec = zeros(length(thresh),1);
tpr = zeros(length(thresh),1);
fpr = zeros(length(thresh),1);
for
i = 1:length(thresh)
idx = (score >= thresh(i));
fpr(i) = sum(instance_count(idx) - target(idx));
tpr(i) = sum(target(idx)) / total_target;
prec(i) = sum(target(idx)) / sum(instance_count(idx));
end
fpr = fpr / total_neg;
if
(plot_pr || plot_roc)
% draw
if
(~hold_fig)
figure
if
(plot_pr)
if
(plot_roc)
subplot(1,2,1);
end
if
(plot_baseline)
target_ratio = total_target / (total_target + total_neg);
plot([0 1], [target_ratio target_ratio],
'k'
);
end
hold on
hold all
plot([0; tpr], [1 ; prec], style);
% add pseudo point to complete curve
xlabel(
'recall'
);
ylabel(
'precision'
);
title(
'precision-recall graph'
);
end
if
(plot_roc)
if
(plot_pr)
subplot(1,2,2);
end
if
(plot_baseline)
plot([0 1], [0 1],
'k'
);
end
hold on;
hold all;
plot([0; fpr], [0; tpr], style);
% add pseudo point to complete curve
xlabel(
'false positive rate'
);
ylabel(
'true positive rate'
);
title(
'roc curve'
);
%axis([0 1 0 1]);
if
(plot_roc && plot_pr)
% double the width
rect = get(gcf,
'pos'
);
rect(3) = 2 * rect(3);
set(gcf,
'pos'
,rect);
end
end
else
if
(plot_pr)
if
(plot_roc)
subplot(1,2,1);
end
plot([0; tpr],[1 ; prec], style);
% add pseudo point to complete curve
end
if
(plot_roc)
if
(plot_pr)
subplot(1,2,2);
end
plot([0; fpr], [0; tpr], style);
end
end
end
|