P2774 方格取数问题

思路:最小割

提交:\(2\)

错因:三目运算符写错(\(QwQ\)

题解:

对棋盘黑白染色,源点向黑点连边,汇点向白点连边,权值均为这个点的权值。
然后所有的黑点向白点连一条\(Inf\)的边。
这样求出的最小割一定会割掉与源点和汇点相连的边,割掉这条边相当于不选这个点。
所以最后答案就是所有点的权值-最小割。

代码:

#include<cstdio>
#include<iostream>
#include<cstring>
#include<queue>
#define R register int
using namespace std;
namespace Luitaryi {
template<class I> inline I g(I& x) { x=0;
  register I f=1; register char ch; while(!isdigit(ch=getchar())) f=ch=='-'?-1:f;
  do x=x*10+(ch-48); while(isdigit(ch=getchar())); return x*=f;
} const int N=10010,M=50010,Inf=1e9;
int n,m,s,t,cnt=1,sum;
int vr[M<<1],nxt[M<<1],w[M<<1],fir[N],cur[N],d[N];
#define P(i,j) ((i-1)*m+j)
inline void add(int u,int v,int ww) {vr[++cnt]=v,nxt[cnt]=fir[u],w[cnt]=ww,fir[u]=cnt;}
inline bool bfs() { memset(d,0,sizeof(d)),memcpy(cur,fir,sizeof(fir));
  queue<int> q; q.push(s),d[s]=1; 
  while(!q.empty()) { R u=q.front(); q.pop();
    for(R i=fir[u];i;i=nxt[i]) { R v=vr[i];
      if(!d[v]&&w[i]) d[v]=d[u]+1,q.push(v);
    }
  } return d[t]>0;
}
inline int dfs(int u,int f) {
  if(u==t||f<=0) return f; R res=f;
  for(R& i=cur[u];i;i=nxt[i]) { R v=vr[i];
    if(d[v]==d[u]+1&&w[i]) {
      R tmp=dfs(v,min(w[i],res));
      if(!tmp) d[v]=0;
      res-=tmp,w[i]-=tmp,w[i^1]+=tmp;
      if(!res) return f;
    }
  } return f-res;
}
inline void dinic() {while(bfs()) sum-=dfs(s,Inf);}
inline bool ck(int i,int j) {return i<1||i>n||j<1||j>m;}
inline void lnk(int i,int j) { R p=P(i,j);
  if(!ck(i+1,j)) add(p,P(i+1,j),Inf),add(P(i+1,j),p,0);
  if(!ck(i-1,j)) add(p,P(i-1,j),Inf),add(P(i-1,j),p,0);
  if(!ck(i,j-1)) add(p,P(i,j-1),Inf),add(P(i,j-1),p,0);
  if(!ck(i,j+1)) add(p,P(i,j+1),Inf),add(P(i,j+1),p,0);
}
inline void main() {
  g(n),g(m); s=n*m+1,t=n*m+2;
  for(R i=1;i<=n;++i) for(R j=1,x,p;j<=m;++j) {
    sum+=g(x),p=P(i,j); 
    ((i+j)&1)?(add(s,p,x),add(p,s,0),lnk(i,j)):(add(p,t,x),add(t,p,0));
  }
  dinic(); printf("%d\n",sum);
}
} signed main() {Luitaryi::main(); return 0;}

2019.08.19
81

转载于:https://www.cnblogs.com/Jackpei/p/11376582.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值