《大数据智能机器学习和自然语言处理技术》PDF+《自然语言处理理论与实战》PDF及代码+唐聃+NLP学习...

人工智能的重要领域之一是NLP,即自然语言处理,在学习过程中涉及到开发工具、Python语言、线性代数、概率论、统计学、语言学等知识,还有一些核心理论,运用这些理论和编程技能才能处理文本,并且需要深入学习。

通过学习,我感觉这两本书感觉还不错,可以配套阅读。

唐聃著,《自然语言处理理论与实战》高清PDF,362页,带书签目录,文字可以复制;配套源代码。

刘知远著,《大数据智能互联网时代的机器学习和自然语言处理技术》PDF,293页,带书签目录,文字可以复制,彩色配图。

下载: https://pan.baidu.com/s/1by-wQDNgnWp-XTznsnn_Yg
提取码: gksi

 

《自然语言处理理论与实战》讲述自然语言处理相关学科知识和理论基础,并介绍使用这些知识的应用和工具,以及如何在实际环境中使用它们。由于自然语言处理的特殊性,其是一门多学科交叉的学科,初学者难以把握知识的广度和宽度,对侧重点不能全面掌握。

 

《大数据智能——互联网时代的机器学习和自然语言处理技术》以大数据为背景,数据庞大,正好可以作为自然语言处理的文本样本。自然语言处理技术涉及到文本处理和模型构建运用,介绍大数据智能的计算框架;章以知识图谱为例介绍大数据智能的知识库;介绍大数据的计算处理系统。介绍智能问答,介绍主题模型,介绍个性化推荐,介绍情感分析与意见挖掘,介绍面向社会媒体内容的分析与应用。

适合愿意对大数据技术有所了解,以及想要将大数据技术应用于本职工作的学习者。

 

 这两份资料都适用于具备一定编程基础的学生、科研工作者和相关技术人员、做工程应用的自然语言处理工程师,也可以通过阅读《自然语言处理理论与实战》补充理论知识,理论知识的魅力在于遇到工程难题时,可以知道其背后的原因,快速、准确地解决问题。

在学习过程中,我也配套了自然语言标注一块儿学习,有助于水平的提升。

《面向机器学习的自然语言标注》中文PDF+英文PDF

下载: https://pan.baidu.com/s/1GqtX_apn8N7jDyi91ns4xw
提取码: 5xrh

 

转载于:https://www.cnblogs.com/shuaizjz/p/10629752.html

  • 0
    点赞
  • 0
    评论
  • 0
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
资深大数据专家多年实战经验总结,拒绝晦涩,开启大数机器学习妙趣之旅。以降低学习曲线阅读难度为宗旨,系统讲解统计学、数据挖掘算法、实际应用案例、数据价值变现,以高级拓展技能,并清晰勾勒出大数技术路线产业蓝图。   本书共分18章。用通俗易懂的语言,结合量案例漫画,不枯燥,实用、接地气。   第1~5章,这部分是大数据入门所需的系统性知识,剖析大数据产业、数据信息算法等的关系,妙解数学基础(排列组合、概率、统计分布),以指标化运营体系构建。这部分补足读者的产业相关概念认知,以所需的数学知识。为下面的数据挖掘算法的理解应用夯实基础。   第6~8章,这部分介绍数据挖掘基础知识算法,讲解了数据息息相关的信息论,重点讲解了:多维向量空间(向量维度、矩阵其计算、上卷下钻);   回归(线性回归、残差分析、拟合相关问题);   聚类(K-Means算法、有趣模式、孤立点、层次密度聚类,聚类的评估等);   分类(朴素贝叶斯、决策树归纳、随机森林、隐马尔科夫模型、SVM、遗传算法)。   第11~18章,这部分介绍生产应用高级扩展。其中第11~15章介绍生产应用实践,涵盖关联分析、用户画像、推荐算法、文本挖掘、人工神经网络。这些也是工业界学术界研究的热点。第16章讲解了著名的大数据框架其安装配置,如Hadoop、Spark、Cassandra、PrestoDB。第17章从速度稳定性维度介绍了大数据系统的架构调优。第18章则从数据运营、评估、展现变现场景层面进行了解读。   附录部分给出了大数据平台运行可能需要的软件库,以群众如何看待炙手可热的大数据。---------《京东
自然语言计算机形式分析是横跨语言学、计算机科学数学的一个交叉研究领域,是自然语言计算机处理的关键。自然语言是信息主要的负荷者,在当今信息网络时代,计算机已经日益普,普通计算机用户可以使用的语言资源正以惊人的速度飞快增长。互联网主要是由自然语言构成的,它已经成为了极为丰富的语言信息资源;移动通信也是以自然语言为媒介的,它已经渗透到日常生活的各个领域。因此,自然语言计算机形式分析对于国家的信息化建设,对于互联网移动通信的安全具有重要作用。   本书对自然语言处理中的各种理论方法进行了系统的总结梳理。首先讨论了自然语言处理的学科定位;接着介绍了语言计算的一些先驱研究;然后以主要的篇幅讨论自然语言处理中的各种形式模型,包括基于短语结构语法的形式模型、基于合一运算的形式模型、基于依存配价的形式模型、基于格语法的形式模型、基于词汇主义的形式模型、语义自动处理的形式模型、系统功能语法、语用自动处理的形式模型、概率语法、Bayes公式动态规划算法、N元语法数据平滑、隐Markov模型(HMM)、语音自动处理的形式模型、统计机器翻译的形式模型;同时还讨论了自然语言处理系统的评测问题;最后从哲学的角度讨论了自然语言处理中的理性主义经验主义,探索理性主义方法经验主义方法相结合的途径。   本书说理透彻、语言流畅、实例丰富、深入浅出,适合从事自然语言处理研究的科研人员、学师生阅读,也可以作为人工智能、计算语言学等课程的教学参考书。
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值