一本通 1633:【例 3】Sumdiv

题目传送门


今天早上考试考了这道题

题意:求\(A^{B}\)所有约数之和%9901的结果。

思路:[暴力]快速幂+线性判约数再求和,30分。

[正解]看到求约数之和,很自然想到唯一分解定理,对于正整数N, N = \(a_1^{b_1}a_2^{b_2}\dots a_n^{b_n}\) 而言,它的约数之和为\((1+a_1+a_1^2+\dots +a_1^{b_1})(1+a_2+a_2^2+\dots + a_2^{b_2})\dots (1+a_n+a_n^2+\dots +a_n^{b_n})\)
\(A^B\)只需将一直加到\(a_i^{b_{i}* B}\)即可。直接暴力求上述多项式的解似乎有50分。

接着考虑优化,不难看出对于每一个多项式,都是一个等比数列的和,即\(1+a_i+a_i^2+\dots +a_i^{b_i} = \frac{a_i^{bi+1}-1}{a_i-1}\), 所以\(1+a_i+a_i^2+\dots +a_i^{b_i} \equiv \frac{a_i^{bi+1}-1}{a_i-1}\)(mod p),那么这里我们只需要求出\(a_i^{b_i+1}-1\)以及\(a_i-1\)在%p下的逆元即可。逆元这里可以用费马小定理求。(我也不晓得为什么递推求会WA掉几个点

对了,如果\(a_i-1\)恰好是p的倍数怎么办呢?这种情况下逆元是不存在的。但是由于\(a_i-1 \equiv 0\)(mod p), 那么\(a_i \equiv 1\)(mod p),这样一来\(1+a_i+a_i^2+\dots +a_i^{b_i} \equiv 1+1+1+\dots + 1\)(mod p), 即\((b_i+1)\)%p.


Code:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <queue>
#include <vector>
#include <algorithm>
#include <cmath>
using namespace std;
//Mystery_Sky
//
#define M 5000101
#define INF 0x3f3f3f3f
#define ll long long
#define Mod 9901
inline ll read()
{
    ll x=0, f=1;char c=getchar();
    while(c<'0'||c>'9') {if(c=='-')f=-1;c=getchar();}
    while(c>='0'&&c<='9'){x=x*10+c-'0';c=getchar();}
    return x*f;
}
ll A, B;
ll prime[M], tot, check[M], inv[M], cnt;
ll a[M], b[M];

inline void get_inv()
{
    inv[1] = 1;
    int p = Mod;
    for(int i = 2; i <= a[cnt]; i++) {
        inv[i] = ((p-p/i) * inv[p%i]) % p;
        //printf("%d ", inv[i]);
    }
}

inline ll quick_pow(ll x, ll k)
{
    ll ret = 1;
    while(k) {
        if(k & 1) ret = (ret * x) % Mod;
        k >>= 1;
        x = (x * x) % Mod;
    }
    return ret % Mod;
}

int main() {
    A = read(), B = read();
    ll n = A;
    for(int i = 2; i * i <= n; i++) {
        if(n % i == 0) {
            a[++cnt] = i;
            while(n % i == 0) {
                n /= i;
                b[cnt]++;
            }
        }
    }
    if(n > 1) a[++cnt] = n, b[cnt] = 1;
    ll ans = 1;
    for(int i = 1; i <= cnt; i++) {
        if((a[i]-1) % M == 0) {
            ans = ((ll) (B * b[i] + 1) % Mod * ans % Mod) % Mod;
            continue;
        }
        else {
            ll x = quick_pow(a[i], (ll)B * b[i]+1);
            x = (x - 1 + Mod) % Mod;
            ll y = quick_pow(a[i]-1, Mod-2);
            ans = ((ll) x * y % Mod * ans % Mod) % Mod;
        }
    }
    printf("%lld\n", (ans + Mod) % Mod);
    return 0;
}

转载于:https://www.cnblogs.com/Benjamin-cpp/p/11376392.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
这道题目是求一个表达式的结果,表达式中包含了欧拉函数和向下取整操作。需要注意的是,最后结果需要对一个给定的mod取模。 首先,我们可以把这个表达式分成两部分来计算。第一部分是计算φ(i)的前缀和,第二部分是计算⌊n/i⌋的前缀和。 对于第一部分,我们可以使用线性筛法来计算φ(i)的前缀和。具体步骤如下: 1. 初始化一个数组phi,大小为k+1,用来保存欧拉函数的值。 2. 初始化一个数组prime,用来保存质数。 3. 初始化一个数组isPrime,大小为k+1,用来标记是否是质数。 4. 初始化一个数组sumPhi,大小为k+1,用来保存φ(i)的前缀和。 5. 遍历2到k的每个数i,如果isPrime[i]为true,则将i加入到prime数组中,并且令phi[i] = i-1。 否则,找到i的最小质因数p,令phi[i] = phi[i/p] * p / (p-1)。 6. 遍历prime数组中的每个质数p,更新phi数组中所有p的倍数的值,令phi[i] = phi[i] * p / (p-1)。 7. 计算sumPhi数组的前缀和,即sumPhi[i] = sumPhi[i-1] + phi[i]。 对于第二部分,我们可以使用容斥原理来计算⌊n/i⌋的前缀和。具体步骤如下: 1. 初始化一个数组sumDiv,大小为k+1,用来保存⌊n/i⌋的前缀和。 2. 遍历1到k的每个数i,计算sumDiv[i] = sumDiv[i-1] + ⌊n/i⌋。 3. 使用容斥原理,减去所有的sumDiv[i] * φ(i),其中i为k的因子。 最后,将第一部分和第二部分的结果相乘,并对mod取模,即可得到最终结果。 以上就是求解这道题目的思路和步骤。希望对你有帮助!如果有任何疑问,请随时提问。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值