// 获取要设置的Arp基准的List后,插入Arp基准表中
public boolean insertArpStandardList(List<ArpTable> list) {
Connection conn = null;
PreparedStatement ps = null;
ResultSet rs = null;
//MySql的JDBC连接的url中要加rewriteBatchedStatements参数,并保证5.1.13以上版本的驱动,才能实现高性能的批量插入。
//优化插入性能,用JDBC的addBatch方法,但是注意在连接字符串加上面写的参数。
//例如: String connectionUrl="jdbc:mysql://192.168.1.100:3306/test?rewriteBatchedStatements=true" ;
String sql = "insert into arp_standard(guid, devicebrand, devicename, deviceip, ipaddress, " +
"macaddress, createtime) values(?,?,?,?,?,?,?)";
try{
conn = DBConnection.getConnection();
ps = conn.prepareStatement(sql);
//优化插入第一步 设置手动提交
conn.setAutoCommit(false);
int len = list.size();
for(int i=0; i<len; i++) {
ps.setString(1, list.get(i).getGuid());
ps.setString(2, list.get(i).getDeviceBrand());
ps.setString(3, list.get(i).getDeviceName());
ps.setString(4, list.get(i).getDeviceIp());
ps.setString(5, list.get(i).getIpAddress());
ps.setString(6, list.get(i).getMacAddress());
ps.setString(7, list.get(i).getCreateTime());
//if(ps.executeUpdate() != 1) r = false; 优化后,不用传统的插入方法了。
//优化插入第二步 插入代码打包,等一定量后再一起插入。
ps.addBatch();
//if(ps.executeUpdate() != 1)result = false;
//每200次提交一次
if((i!=0 && i%200==0) || i==len-1){//可以设置不同的大小;如50,100,200,500,1000等等
ps.executeBatch();
//优化插入第三步 提交,批量插入数据库中。
conn.commit();
ps.clearBatch(); //提交后,Batch清空。
}
}
} catch (Exception e) {
System.out.println("MibTaskPack->getArpInfoList() error:" + e.getMessage());
return false; //出错才报false
} finally {
DBConnection.closeConection(conn, ps, rs);
}
return true;
}
效率要比一条一条插入快近60倍。比如for循环或者insert into table test select * from....