BZOJ_1014_[JSOI2008]火星人prefix_splay+hash

BZOJ_1014_[JSOI2008]火星人prefix_splay+hash

题意:火星人最近研究了一种操作:求一个字串两个后缀的公共前缀。比方说,有这样一个字符串:madamimadam,
我们将这个字符串的各个字符予以标号:序号: 1 2 3 4 5 6 7 8 9 10 11 字符 m a d a m i m a d a m 现在,
火星人定义了一个函数LCQ(x, y),表示:该字符串中第x个字符开始的字串,与该字符串中第y个字符开始的字串
,两个字串的公共前缀的长度。比方说,LCQ(1, 7) = 5, LCQ(2, 10) = 1, LCQ(4, 7) = 0 在研究LCQ函数的过程
中,火星人发现了这样的一个关联:如果把该字符串的所有后缀排好序,就可以很快地求出LCQ函数的值;同样,
如果求出了LCQ函数的值,也可以很快地将该字符串的后缀排好序。 尽管火星人聪明地找到了求取LCQ函数的快速
算法,但不甘心认输的地球人又给火星人出了个难题:在求取LCQ函数的同时,还可以改变字符串本身。具体地说
,可以更改字符串中某一个字符的值,也可以在字符串中的某一个位置插入一个字符。地球人想考验一下,在如此
复杂的问题中,火星人是否还能够做到很快地求取LCQ函数的值。

 

分析:

建一棵splay,节点保存区间的哈希值

询问的时候二分哈希就做完了

注意二分边界

 

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
#define ls ch[p][0]
#define rs ch[p][1]
#define get(x) (ch[f[x]][1]==x)
#define N 250050
#define LL unsigned long long
LL h[N],mi[N],seed=9901;
int ch[N][2],siz[N],f[N],val[N],rt,sz,n,m;
char opt[10],s[N];
void pushup(int p)
{
    if(!p)return ;
    siz[p]=siz[ls]+siz[rs]+1;
    h[p]=(h[ls]*seed+val[p])*mi[siz[rs]]+h[rs];
}
void rotate(int x)
{
    int y=f[x],z=f[y],k=get(x);
    ch[y][k]=ch[x][!k];f[ch[y][k]]=y;
    ch[x][!k]=y;f[y]=x;f[x]=z;
    if(z) ch[z][ch[z][1]==y]=x;
    pushup(y);pushup(x);
    if(rt==y)rt=x;
}
void splay(int x,int y)
{
    for(int fa;(fa=f[x])!=y;rotate(x))
        if(f[fa]!=y)
            rotate((get(x)==get(fa)) ? fa : x); 
}
int find(int x)
{
    int p=rt;
    while(1)
    {
        if(x<=siz[ls])p=ls;
        else{
            x-=siz[ls]+1;
            if(!x)return p;
            p=rs;
        }
    }
}
void build(int fa,int l,int r,bool flg)
{
    if(l>r)return ;
    int mid=l+r>>1;
    ch[fa][flg]=mid;
    f[mid]=fa;
    siz[mid]=r-l+1;
    build(mid,l,mid-1,0);
    build(mid,mid+1,r,1);
    pushup(mid);
}
void print()
{
    int p;
    printf("%d\n",sz);
    for(int i=1;i<=sz;i++)p=find(i),printf("p=%d val[p]=%c\n",p,val[p]);
}
LL hash(int x,int p)
{
    //x--;p++;
    p+=2;
    x=find(x);p=find(p);
    splay(x,0);splay(p,rt);
    return h[ls];
}
int main()
{
    scanf("%s%d",s+1,&m);
    int n=strlen(s+1);
    for(int i=1;i<=n;i++)val[i+1]=s[i];
    mi[0]=1;
    for(int i=1;i<=250020;i++)mi[i]=mi[i-1]*seed;
    build(0,1,n+2,0);
    sz=n+2;
    //print();
    rt=n+3>>1;
    int i,x,y;
    char w[10];
    for(i=1;i<=m;i++){
        scanf("%s%d",opt,&x);
        if(opt[0]=='Q'){
            scanf("%d",&y);
            int l=1,r=sz-max(x,y);
            while(l<r){
                //puts("FUCK");
                int mid=l+r>>1;
                if(hash(x,x+mid-1)==hash(y,y+mid-1))l=mid+1;
                else r=mid;
            }
            printf("%d\n",l-1);
        }else if(opt[0]=='R'){
            scanf("%s",w);
            x=find(x+1);
            splay(x,0);
            val[x]=w[0];
            pushup(x);
        }else{
            scanf("%s",w);
            x++;
            int p=x+1;
            x=find(x);
            p=find(p);
            splay(x,0);
            splay(p,rt);
            ls=++sz;
            val[ls]=w[0];
            siz[ls]=1;
            h[ls]=w[0];
            f[ls]=p;
            pushup(p);pushup(x);
        }
    }
}

 

转载于:https://www.cnblogs.com/suika/p/8593387.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值