BZOJ_2124_等差子序列_线段树+Hash

BZOJ_2124_等差子序列_线段树+Hash

Description

给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pLen<=N (Len>=3),
使得Ap1,Ap2,Ap3,…ApLen是一个等差序列。

Input

输入的第一行包含一个整数T,表示组数。
下接T组数据,每组第一行一个整数N,每组第二行为一个1到N的排列,数字两两之间用空格隔开。
N<=10000,T<=7

Output

对于每组数据,如果存在一个等差子序列,则输出一行“Y”,否则输出一行“N”。

Sample Input

2
3
1 3 2
3
3 2 1

Sample Output

N
Y


 

其实就是问是否存在一个长度为3的等差数列。

一种暴力:枚举中间数x,然后枚举差d,看x-d和x+d是不是有一个在桶里有一个不在桶里,如果是则x-d,x,x+d构成等差子序列。

然后优化这个暴力,如果把桶看成一个01的字符串,我要找的其实是x左边和右边延伸的一个字符串。

这个字符串如果不回文说明存在等差子序列。

可以用线段树动态维护正串和反串的hash值。

 

代码:

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std;
typedef unsigned long long ll;
#define N 10050
#define ls p<<1
#define rs p<<1|1
ll h[N<<2][2],mi[N],base=7233913;
int n,a[N];
void build(int l,int r,int p) {
    if(l==r)  {
        h[p][0]=h[p][1]='0';
        return ;
    }
    int mid=(l+r)>>1;
    build(l,mid,ls); build(mid+1,r,rs);
    h[p][0]=h[ls][0]*mi[r-mid]+h[rs][0];
    h[p][1]=h[rs][1]*mi[mid-l+1]+h[ls][1];
} 
void update(int l,int r,int x,int p) {
    if(l==r) {
        h[p][0]=h[p][1]='1';
        return ;
    }
    int mid=(l+r)>>1;
    if(x<=mid) update(l,mid,x,ls);
    else update(mid+1,r,x,rs);
    h[p][0]=h[ls][0]*mi[r-mid]+h[rs][0];
    h[p][1]=h[rs][1]*mi[mid-l+1]+h[ls][1];
}
ll query(int l,int r,int x,int y,int flg,int p) {
    if(x<=l&&y>=r) return h[p][flg];
    int mid=(l+r)>>1;
    if(y<=mid) return query(l,mid,x,y,flg,ls);
    else if(x>mid) return query(mid+1,r,x,y,flg,rs);
    else {
        ll lx=query(l,mid,x,mid,flg,ls),rx=query(mid+1,r,mid+1,y,flg,rs);
        if(!flg) {
            return lx*mi[y-mid]+rx;
        }else {
            return rx*mi[mid-x+1]+lx;
        }
    }
}
int main() {
    int T;
    scanf("%d",&T);
    while(T--) {
        scanf("%d",&n);
        int i;
        for(mi[0]=1,i=1;i<=n;i++) {
            scanf("%d",&a[i]);
            mi[i]=mi[i-1]*base;
        }
        memset(h,0,sizeof(h));
        build(1,n,1);
        int flg=0;
        for(i=1;i<=n;i++) {
            if(a[i]!=1&&a[i]!=n) {
                ll lans,rans;
                if(a[i]-1>=n-a[i]) {
                    lans=query(1,n,2*a[i]-n,a[i]-1,0,1);
                    rans=query(1,n,a[i]+1,n,1,1);
                }else {
                    lans=query(1,n,1,a[i]-1,0,1);
                    rans=query(1,n,a[i]+1,2*a[i]-1,1,1);
                }
                if(lans!=rans) {
                    flg=1; break;
                }
            }
            update(1,n,a[i],1);
        }
        puts(flg?"Y":"N");
    }
}

 

转载于:https://www.cnblogs.com/suika/p/8997956.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 有一个 $n$ 个点的棋盘,每个点上有一个数字 $a_i$,你需要从 $(1,1)$ 走到 $(n,n)$,每次只能往右或往下走,每个格子只能经过一次,路径上的数字和为 $S$。定义一个点 $(x,y)$ 的权值为 $a_x+a_y$,求所有满足条件的路径中,所有点的权值和的最小值。 输入格式 第一行一个整数 $n$。 接下来 $n$ 行,每行 $n$ 个整数,表示棋盘上每个点的数字。 输出格式 输出一个整数,表示所有满足条件的路径中,所有点的权值和的最小值。 数据范围 $1\leq n\leq 300$ 输入样例 3 1 2 3 4 5 6 7 8 9 输出样例 25 算法1 (树形dp) $O(n^3)$ 我们可以先将所有点的权值求出来,然后将其看作是一个有权值的图,问题就转化为了在这个图中求从 $(1,1)$ 到 $(n,n)$ 的所有路径中,所有点的权值和的最小值。 我们可以使用树形dp来解决这个问题,具体来说,我们可以将这个图看作是一棵树,每个点的父节点是它的前驱或者后继,然后我们从根节点开始,依次向下遍历,对于每个节点,我们可以考虑它的两个儿子,如果它的两个儿子都被遍历过了,那么我们就可以计算出从它的左儿子到它的右儿子的路径中,所有点的权值和的最小值,然后再将这个值加上当前节点的权值,就可以得到从根节点到当前节点的路径中,所有点的权值和的最小值。 时间复杂度 树形dp的时间复杂度是 $O(n^3)$。 C++ 代码 算法2 (动态规划) $O(n^3)$ 我们可以使用动态规划来解决这个问题,具体来说,我们可以定义 $f(i,j,s)$ 表示从 $(1,1)$ 到 $(i,j)$ 的所有路径中,所有点的权值和为 $s$ 的最小值,那么我们就可以得到如下的状态转移方程: $$ f(i,j,s)=\min\{f(i-1,j,s-a_{i,j}),f(i,j-1,s-a_{i,j})\} $$ 其中 $a_{i,j}$ 表示点 $(i,j)$ 的权值。 时间复杂度 动态规划的时间复杂度是 $O(n^3)$。 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值