第一题:有 n 个学生站成一排,每个学生有一个能力值,牛牛想从这 n 个学生中按照顺序选取 k 名学生,要求相邻两个学生的位置编号的差不超过 d,使得这 k 个学生的能力值的乘积最大,你能返回最大的乘积吗?
采用了两个矩阵mx,mn
mx[i][j]是从i个选出j个,并以i为结束,满足相邻位置不大于j的最大乘积
mn[i][j]是从i个选出j个,并以i为结束,满足相邻
#include<iostream> #include<cstdio> #include<algorithm> using namespace std; #define N 110 const long long INF=1e8; long long a[N],mx[N][N],mn[N][N];//事先声明了数组,因为最后数可能会很大,所以定义的longlong类型 long long max(long long a,long long b) { return a>b?a:b; } long long min(long long a,long long b) { return a>b?b:a; } int main() { int n; scanf("%d",&n); for(int i=1;i<=n;i++)//这种输入数组的方法 scanf("%lld",&a[i]); int k,d; scanf("%d%d",&k,&d); for(int i=1;i<=n;i++)//初始化mx,mn数组 { mx[i][0]=1; mn[i][0]=1; for(int j=1;j<=k;j++) { mx[i][j]=-INF; mn[i][j]=INF; } } long long mmx=-100,mnx=100;//mmx主要是用于当k=1时选出数组中最大的元素 long long ans=-INF; for(int i=1;i<=n;i++) { mmx=max(mmx,a[i]); mx[i][1]=a[i]; mn[i][1]=a[i]; if(k==1) ans=max(ans,mmx); } for(int i=1;i<=n;i++) { for(int j=2;j<=k;j++)//j=1已经讨论过了 { for(int r=i-1;r>=max(1,i-d)&&r>=j-1;r--)//mx[r][j-1]表示从前r个中选出j-1个最大的乘积,所以r>=j-1;r只能最多回溯d个或者回溯到底 { mx[i][j]=max(mx[i][j],mx[r][j-1]*a[i]); mx[i][j]=max(mx[i][j],mn[r][j-1]*a[i]); mn[i][j]=min(mn[i][j],mx[r][j-1]*a[i]); mn[i][j]=min(mn[i][j],mn[r][j-1]*a[i]); if(j==k) ans=max(ans,mx[i][j]); } } } cout<<ans; }
位置不大于j的最小乘积