Codeforces_845

A.排序,比较中间两个大小。

#include<bits/stdc++.h>
using namespace std;

int n,a[205];

int main()
{
    ios::sync_with_stdio(0);
    cin >> n;
    for(int i = 1;i <= 2*n;i++) cin >> a[i];
    sort(a+1,a+1+n*2);
    reverse(a+1,a+1+n*2);
    if(a[n] > a[n+1])   cout << "YES" << endl;
    else    cout << "NO" << endl;
    return 0;
}
View Code

B.优先改变价值大的位置。

#include<bits/stdc++.h>
using namespace std;

int n,sub[6],add[6];
string s;

int main()
{
    ios::sync_with_stdio(0);
    cin >> s;
    int sum1 = 0,sum2 = 0;
    for(int i = 0;i < 3;i++)
    {
        sum1 += s[i]-'0';
        sub[i] = s[i]-'0';
        add[i] = '9'-s[i];
    }
    for(int i = 3;i < 6;i++)
    {
        sum2 += s[i]-'0';
        sub[i] = s[i]-'0';
        add[i] = '9'-s[i];
    }
    if(sum1 > sum2)
    {
        int t = sum1-sum2;
        int a[6];
        for(int i = 0;i < 3;i++)    a[i] = sub[i];
        for(int i = 3;i < 6;i++)    a[i] = add[i];
        sort(a,a+6);
        reverse(a,a+6);
        for(int i = 0;i < 6;i++)
        {
            t -= a[i];
            if(t <= 0)
            {
                cout << i+1 << endl;
                return 0;
            }
        }
    }
    else if(sum2 > sum1)
    {
        int t = sum2-sum1;
        int a[6];
        for(int i = 0;i < 3;i++)    a[i] = add[i];
        for(int i = 3;i < 6;i++)    a[i] = sub[i];
        sort(a,a+6);
        reverse(a,a+6);
        for(int i = 0;i < 6;i++)
        {
            t -= a[i];
            if(t <= 0)
            {
                cout << i+1 << endl;
                return 0;
            }
        }
    }
    else    cout << 0 << endl;
    return 0;
}
View Code

C.按l排序,优先队列模拟,处理出最小需要的TV数量。

#include<bits/stdc++.h>
using namespace std;

int n;
struct xx
{
    int l,r;
    friend bool operator<(xx a,xx b)
    {
        return a.l < b.l;
    }
}a[200005];

int main()
{
    ios::sync_with_stdio(0);
    cin >> n;
    for(int i = 1;i <= n;i++)   cin >> a[i].l >> a[i].r;
    sort(a+1,a+1+n);
    int ans = 0;
    priority_queue< int,vector<int>,greater<int> > q;
    for(int i = 1;i <= n;i++)
    {
        if(q.empty() || a[i].l <= q.top())
        {
            ans++;
            q.push(a[i].r);
        }
        else
        {
            q.pop();
            q.push(a[i].r);
        }
    }
    if(ans > 2) cout << "NO" << endl;
    else    cout << "YES" << endl;
    return 0;
}
View Code

D.栈模拟。

#include<bits/stdc++.h>
using namespace std;

int n;

int main()
{
    ios::sync_with_stdio(0);
    cin >> n;
    stack<int> s;
    int ans = 0,now,cntover = 0;
    while(n--)
    {
        int x,y;
        cin >> x;
        if(x == 1)  cin >> now;
        else if(x == 2)
        {
            ans += cntover;
            cntover = 0;
        }
        else if(x == 3)
        {
            cin >> y;
            s.push(y);
        }
        else if(x == 4) cntover = 0;
        else if(x == 5)
        {
            while(!s.empty())   s.pop();
        }
        else    cntover++;
        while(!s.empty() && now > s.top())
        {
            ans++;
            s.pop();
        }
    }
    cout << ans << endl;
    return 0;
}
View Code

G.dfs,每遇到环可以存起来,最后更新答案。

#include<bits/stdc++.h>
using namespace std;

int n,m,a[100005],vis[100005] = {0};
struct xx
{
    int to,w;
    xx(int a,int b):to(a),w(b){};
};
vector<xx> v[100005];
vector<int> vv;

void add(int x)
{
    for(int i = 0;i < vv.size();i++)    x = min(x,x^vv[i]);
    if(x)   vv.push_back(x);
}

void dfs(int now,int val)
{
    vis[now] = 1;
    a[now] = val;
    for(int i = 0;i < v[now].size();i++)
    {
        int t = v[now][i].to,w = v[now][i].w;
        if(vis[t])  add(val^w^a[t]);
        else    dfs(t,w^val);
    }
}
int main()
{
    ios::sync_with_stdio(0);
    cin >> n >> m;
    while(m--)
    {
        int x,y,z;
        cin >> x >> y >> z;
        v[x].push_back(xx(y,z));
        v[y].push_back(xx(x,z));
    }
    dfs(1,0);
    for(int i = 0;i < vv.size();i++)    a[n] = min(a[n],a[n]^vv[i]);
    cout << a[n] << endl;
    return 0;
}
View Code

 

转载于:https://www.cnblogs.com/zhurb/p/7436195.html

内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值