题目描述
有一位使者要游历各国,他每到一个国家,都能学到一种文化,但他不愿意学习任何一
种文化超过一次(即如果他学习了某种文化,则他就不能到达其他有这种文化的国家)。不
同的国家可能有相同的文化。不同文化的国家对其他文化的看法不同,有些文化会排斥外来
文化(即如果他学习了某种文化,则他不能到达排斥这种文化的其他国家)。
现给定各个国家间的地理关系,各个国家的文化,每种文化对其他文化的看法,以及这
位使者游历的起点和终点(在起点和终点也会学习当地的文化),国家间的道路距离,试求
从起点到终点最少需走多少路。
输入输出格式
输入格式:
第一行为五个整数 N,K,M,S,T,每两个整数之间用一个空格隔开,依次代表国家
个数(国家编号为 1 到 N),文化种数(文化编号为 1 到 K),道路的条数,以及起点和终点
的编号(保证 S 不等于 T);
第二行为 N 个整数,每两个整数之间用一个空格隔开,其中第 i 个数 Ci,表示国家 i
的文化为 Ci。
接下来的 K 行,每行 K 个整数,每两个整数之间用一个空格隔开,记第 i 行的第 j 个数
为 aij,aij= 1 表示文化 i 排斥外来文化 j(i 等于 j 时表示排斥相同文化的外来人),aij= 0 表示
不排斥(注意 i 排斥 j 并不保证 j 一定也排斥 i)。
接下来的 M 行,每行三个整数 u,v,d,每两个整数之间用一个空格隔开,表示国家 u
与国家 v 有一条距离为 d 的可双向通行的道路(保证 u 不等于 v,两个国家之间可能有多条
道路)。
输出格式:
输出只有一行,一个整数,表示使者从起点国家到达终点国家最少需要走的距离数(如
果无解则输出-1)。
输入输出样例
2 2 1 1 2 1 2 0 1 1 0 1 2 10
-1
2 2 1 1 2 1 2 0 1 0 0 1 2 10
10
说明
输入输出样例说明1
由于到国家 2 必须要经过国家 1,而国家 2 的文明却排斥国家 1 的文明,所以不可能到
达国家 2。
输入输出样例说明2
路线为 1 -> 2
【数据范围】
对于 100%的数据,有 2≤N≤100 1≤K≤100 1≤M≤N2 1≤ki≤K 1≤u, v≤N 1≤d≤1000 S≠T 1≤S,T≤N
NOIP 2012 普及组 第四题
————————————————-我是分割线————————————————————————
1 /* 2 Problem: 3 OJ: 4 User:S.B.S. 5 Time: 6 Memory: 7 Length: 8 */ 9 #include<iostream> 10 #include<cstdio> 11 #include<cstring> 12 #include<cmath> 13 #include<algorithm> 14 #include<queue> 15 #include<cstdlib> 16 #include<iomanip> 17 #include<cassert> 18 #include<climits> 19 #include<functional> 20 #include<bitset> 21 #include<vector> 22 #include<list> 23 #include<map> 24 #define maxn 101 25 #define F(i,j,k) for(register int i=j;i<=k;i++) 26 #define rep(i,j,k) for(int i=j;i<k;i++) 27 #define M(a,b) memset(a,b,sizeof(a)) 28 #define FF(i,j,k) for(int i=j;i>=k;i--) 29 #define inf 0x3f3f3f3f 30 #define maxm 1001 31 #define mod 998244353 32 //#define LOCAL 33 using namespace std; 34 int read(){ 35 int x=0,f=1;char ch=getchar(); 36 while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();} 37 while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();} 38 return x*f; 39 } 40 int n,m,k; 41 int s[maxn][maxn],a[maxn][maxn][2]; 42 int u[maxm][maxn],qu[50001],p[50001]; 43 int d[maxn],pp[maxn]; 44 int start,end; 45 inline void bfs() 46 { 47 int head=0,tail=1; 48 qu[head]=start;p[head]=0;u[0][start]=1; 49 F(i,1,n) if(s[pp[i]][pp[start]]==1) u[0][i]=1; 50 else if(pp[i]==pp[start]) u[0][i]=1; 51 while(head!=tail){ 52 F(i,1,a[qu[head]][0][0]) 53 if(u[head][a[qu[head]][i][0]]==0&&(d[a[qu[head]][i][0]]>p[head]+a[qu[head]][i][1]||d[a[qu[head]][i][0]]==0)) 54 { 55 F(j,1,n) if(s[pp[j]][pp[a[qu[head]][i][0]]]==1) u[tail][j]=1; 56 else if(u[head][j]==1) u[tail][j]=1; 57 else if(pp[j]==pp[a[qu[head]][i][0]]) u[tail][j]=1; 58 d[a[qu[head]][i][0]]=p[head]+a[qu[head]][i][1]; 59 p[tail]=d[a[qu[head]][i][0]]; 60 qu[tail]=a[qu[head]][i][0]; 61 tail++; 62 tail%=50000; 63 } 64 head++; 65 head%=50000; 66 } 67 } 68 int main() 69 { 70 std::ios::sync_with_stdio(false);//cout<<setiosflags(ios::fixed)<<setprecision(1)<<y; 71 #ifdef LOCAL 72 freopen("data.in","r",stdin); 73 freopen("data.out","w",stdout); 74 #endif 75 cin>>n>>k>>m>>start>>end; 76 F(i,1,n) cin>>pp[i]; 77 F(i,1,k)F(j,1,k) cin>>s[i][j]; 78 F(i,1,m){ 79 int aa,bb,cc;cin>>aa>>bb>>cc; 80 a[aa][++a[aa][0][0]][0]=bb; 81 a[aa][a[aa][0][0]][1]=cc; 82 a[bb][++a[bb][0][0]][0]=aa; 83 a[bb][a[bb][0][0]][1]=cc; 84 } 85 bfs(); 86 if(d[end]!=0) cout<<d[end]<<endl; 87 else cout<<"-1"<<endl; 88 return 0; 89 }