【BZOJ3197】[SDOI2013]刺客信条

【BZOJ3197】[SDOI2013]刺客信条

题面

bzoj

洛谷

题解

关于树的同构,有一个非常好的性质:

把树的重心抠出来,那么会出现两种情况:

1.有一个重心,那么我们直接把这个重心作为树的根。

2.有多个重心,这些重心一定有一条边相连,设重心为\(u,v\),那么把\(u,v\)断开,用一个新的点把

\(u,v\)连起来,将这个点作为根。

最终同构当且仅当与左右两子树分别同构。

有了这条性质,我们继续往下考虑:

\(f[x][y]\)表示\(x\)的子树与\(y\)的子树同构的最小代价,

怎么转移?

可以分别用\(x,y\)儿子匹配中间的代价来做,

因为他们的儿子肯定是个完美匹配

直接用\(KM\)或费用流进行二分图最大权匹配即可。

对于判断两子树是否相同树哈希即可。

代码

#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <cstring> 
#include <cmath> 
#include <algorithm>
#include <queue>
#include <vector> 
using namespace std; 
inline int gi() { 
    register int data = 0, w = 1; 
    register char ch = 0; 
    while (!isdigit(ch) && ch != '-') ch = getchar(); 
    if (ch == '-') w = -1, ch = getchar(); 
    while (isdigit(ch)) data = 10 * data + ch - '0', ch = getchar(); 
    return w * data; 
} 
typedef unsigned long long ull; 
const int MAX_N = 1405; 
namespace Sol { 
    const int INF = 1e9; 
    struct Graph { 
        int to, next, cap, cost, rev; 
    } e[MAX_N << 4]; 
    int fir[MAX_N], e_cnt, S, T; 
    void clearGraph() { fill(&fir[S], &fir[T + 1], -1); e_cnt = 0; } 
    void Add_Edge(int u, int v, int cap, int cost) { 
        e[e_cnt] = (Graph){v, fir[u], cap, cost, e_cnt + 1};  
        fir[u] = e_cnt++; 
        e[e_cnt] = (Graph){u, fir[v], 0, -cost, e_cnt - 1}; 
        fir[v] = e_cnt++; 
    } 
    int dis[MAX_N], preve[MAX_N], prevv[MAX_N];
    bool inq[MAX_N]; 
    int min_cost_flow(int s, int t) {
        static queue<int> que; int cost = 0; 
        while (1) { 
            fill(&dis[s], &dis[t + 1], INF); 
            fill(&inq[s], &inq[t + 1], 0); 
            inq[s] = 1, dis[s] = 0, que.push(s); 
            while (!que.empty()) {
                int x = que.front(); que.pop(); 
                for (int i = fir[x]; ~i; i = e[i].next) { 
                    int v = e[i].to; 
                    if (dis[x] + e[i].cost < dis[v] && e[i].cap > 0) {
                        dis[v] = dis[x] + e[i].cost;
                        preve[v] = i, prevv[v] = x;
                        if (!inq[v]) que.push(v), inq[v] = 1; 
                    } 
                } 
                inq[x] = 0; 
            } 
            if (dis[t] == INF) return cost; 
            int d = INF;
            for (int x = t; x != s; x = prevv[x]) d = min(e[preve[x]].cap, d); 
            cost += dis[t] * d; 
            for (int x = t; x != s; x = prevv[x]) { 
                e[preve[x]].cap -= d; 
                e[e[preve[x]].rev].cap += d; 
            } 
        } 
    } 
}  
struct Graph { int to, next; } e[MAX_N << 1]; int fir[MAX_N], e_cnt = 0; 
void clearGraph() { memset(fir, -1, sizeof(fir)); e_cnt = 0; } 
void Add_Edge(int u, int v) { e[e_cnt] = (Graph){v, fir[u]}; fir[u] = e_cnt++; }
int N, a[MAX_N], b[MAX_N], F[MAX_N], size[MAX_N], Rt; 
void getRoot(int x, int fa) { 
    size[x] = 1, F[x] = 0; 
    for (int i = fir[x]; ~i; i = e[i].next) { 
        int v = e[i].to; if (v == fa) continue; 
        getRoot(v, x); size[x] += size[v];
        F[x] = max(F[x], size[v]); 
    }
    F[x] = max(F[x], N - size[x]); 
    if (F[x] < F[Rt]) Rt = x; 
}
vector<int> vec1[MAX_N], vec2[MAX_N]; 
ull hs[MAX_N]; int f[MAX_N][MAX_N], c[MAX_N][MAX_N]; 
bool cmp(const int &i, const int &j) { return hs[i] < hs[j]; } 
void dfs(int x, int fa, vector<int> *vec) { 
    size[x] = 1, hs[x] = 0, vec[x].clear(); 
    for (int i = fir[x]; ~i; i = e[i].next) {
        int v = e[i].to; if (v == fa) continue; 
        dfs(v, x, vec); size[x] += size[v], vec[x].push_back(v); 
    }
    sort(vec[x].begin(), vec[x].end(), cmp); 
    for (int i = vec[x].size() - 1; ~i; --i) hs[x] = hs[x] * N + hs[vec[x][i]]; 
    hs[x] = hs[x] * N + size[x]; 
} 
int solve(int n) { 
    Sol::S = 0, Sol::T = n << 1 | 1; 
    Sol::clearGraph(); 
    for (int i = 1; i <= n; i++) { 
        Sol::Add_Edge(Sol::S, i, 1, 0), Sol::Add_Edge(i + n, Sol::T, 1, 0); 
        for (int j = 1; j <= n; j++) Sol::Add_Edge(i, j + n, 1, c[i][j]); 
    } 
    return Sol::min_cost_flow(Sol::S, Sol::T); 
} 
int Dp(int x, int y) { 
    if (f[x][y] != -1) return f[x][y]; 
    f[x][y] = a[x] ^ b[y]; 
    for (int i = 0, j, sz = vec1[x].size() - 1; i <= sz; i++) {
        j = i; while (j < sz && hs[vec1[x][j + 1]] == hs[vec1[x][i]]) ++j;
        for (int k = i; k <= j; k++)
            for (int l = i; l <= j; l++) 
                Dp(vec1[x][k], vec2[y][l]);
        for (int k = i; k <= j; k++) 
            for (int l = i; l <= j; l++)
                c[k - i + 1][l - i + 1] = Dp(vec1[x][k], vec2[y][l]);
        f[x][y] += solve(j - i + 1); i = j; 
    }
    return f[x][y]; 
} 
int main () { 
    clearGraph();
    N = gi(), F[0] = N; 
    for (int i = 1; i < N; i++) { 
        int u = gi(), v = gi(); 
        Add_Edge(u, v), Add_Edge(v, u); 
    } 
    for (int i = 1; i <= N; i++) a[i] = gi(); 
    for (int i = 1; i <= N; i++) b[i] = gi(); 
    getRoot(1, 0); dfs(Rt, 0, vec2); ull res = hs[Rt];
    int ans = N; 
    for (int i = 1; i <= N; i++) { 
        dfs(i, 0, vec1); 
        if (hs[i] == res) {
            memset(f, -1, sizeof(f)); 
            ans = min(ans, Dp(i, Rt)); 
        } 
    } 
    printf("%d\n", ans); 
    return 0; 
} 

一些题外话

\(KM\)与费用流的速度对比(不开O2):

我的费用流:

1536738-20190114144924511-303020802.png

\(xgzc\)的辣鸡\(KM\):

1536738-20190114145326466-1418874224.png

\(zzx\)的豪华版\(KM\):

1536738-20190114145524204-701723375.png

所以用费用流也不是不行

转载于:https://www.cnblogs.com/heyujun/p/10266707.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值