ElasticSearch学习(十三) --mapping概述

转载自:https://blog.csdn.net/chengyuqiang/column/info/18392,ES版本号6.3.0
转载自:https://blog.csdn.net/qq_23536449/article/details/91364242

mapping概述

ElasticSearch提供了丰富的映射参数对字段的映射进行参数设计,比如字段的分词器、字段权重、日期格式、检索模型等。

analyzer
指定分词器(分析器更合理),随索引和查询都有效。如下,指定ik分词的配置
(1)定义索引

DELETE my_index
PUT my_index

(2)ik_smart分词

GET my_index/_analyze
{
  "analyzer": "ik_smart",
  "text": "安徽省长江流域"
}

返回

{
  "tokens": [
    {
      "token": "安徽省",
      "start_offset": 0,
      "end_offset": 3,
      "type": "CN_WORD",
      "position": 0
    },
    {
      "token": "长江流域",
      "start_offset": 3,
      "end_offset": 7,
      "type": "CN_WORD",
      "position": 1
    }
  ]
}

(3)定义mapping

POST my_index/fulltext/_mapping
{
  "properties": {
    "content":{
      "type": "text",
      "analyzer": "ik_max_word",
      "search_analyzer": "ik_max_word"
    }
  }
}

(4)插入数据

POST my_index/fulltext/1
{"content":"美国留给伊拉克的是个烂摊子吗"}
POST my_index/fulltext/2
{"content":"公安部:各地校车将享最高路权"}
POST my_index/fulltext/3
{"content":"中韩渔警冲突调查:韩警平均每天扣1艘中国渔船"}
POST my_index/fulltext/4
{"content":"中国驻洛杉矶领事馆遭亚裔男子枪击 嫌犯已自首"}

(5)查询

POST my_index/fulltext/_search
{
  "query": {
    "match": {
      "content": "中国"
    }
  }
}

返回

{
  "took": 67,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 0.6489038,
    "hits": [
      {
        "_index": "my_index",
        "_type": "fulltext",
        "_id": "4",
        "_score": 0.6489038,
        "_source": {
          "content": "中国驻洛杉矶领事馆遭亚裔男子枪击 嫌犯已自首"
        }
      },
      {
        "_index": "my_index",
        "_type": "fulltext",
        "_id": "3",
        "_score": 0.2876821,
        "_source": {
          "content": "中韩渔警冲突调查:韩警平均每天扣1艘中国渔船"
        }
      }
    ]
  }
}

normalizer
normalizer用于解析前的标准化配置,比如把所有字符串转换为小写
(1)创建索引

DELETE my_index
PUT my_index
{
  "settings": {
    "analysis": {
      "normalizer":{
        "my_normalizer":{
          "type":"custom",
          "char_filter":[],
          "filter":["lowercase","asciifolding"]
        }
      }
    }
  },
  "mappings": {
    "type":{
      "properties": {
        "foo":{
          "type": "keyword",
          "normalizer": "my_normalizer"
        }
      }
    }
  }
}

(2)插入数据

PUT my_index/type/1 
{"foo": "BÀR"}
PUT my_index/type/2
{"foo": "bar"}
PUT my_index/type/3
{"foo": "baz"}
POST my_index/_refresh

(3)查询

GET my_index/_search
{
  "query": {
    "match": {
      "foo": "BAR"
    }
  }
}

返回

{
  "took": 2,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 0.2876821,
    "hits": [
      {
        "_index": "my_index",
        "_type": "type",
        "_id": "2",
        "_score": 0.2876821,
        "_source": {
          "foo": "bar"
        }
      },
      {
        "_index": "my_index",
        "_type": "type",
        "_id": "1",
        "_score": 0.2876821,
        "_source": {
          "foo": "BÀR"
        }
      }
    ]
  }
}

boost
我们可以通过指定一个boost值来控制每个查询子句的相对权重,该值默认为1,一个大于1的boost会增加该查询子句的相对权重
(1)创建索引

DELETE my_index
PUT my_index
PUT my_index/my_type/1
{
  "title":"quick brown fox"
 
}

(2)查询

POST _search
{
  "query": {
    "match": {
      "title": {
        "query": "qucik brown fox",
        "boost":2
      }
    }
  }
}

返回

{
  "took": 83,
  "timed_out": false,
  "_shards": {
    "total": 39,
    "successful": 39,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 1.1507283,
    "hits": [
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "1",
        "_score": 1.1507283,
        "_source": {
          "title": "quick brown fox"
        }
      }
    ]
  }
}

boost参数被用来增加一个子句的相对权重(当boost大于1时),或者减小相对权重(当boost介于0到1),但是增加或者减小不是线性的。换言之,boost设置为2并不会让最终的_score加倍。相反,新的_score会在使用了boost后被归一化(Normalized)。每种查询都有自己的归一化算法(Normalization Algorithm)。但是能够说一个高的boost值会产生一个高的_score。

coerce

coerce属性用于清除脏数据,coerce的默认值是true。整形数字5有可能被写成“5”或者浮点数字5.0,coerce属性可以用来清除脏数据。
字符串会被强制转换为整数
浮点数被强制转换为整数
(1)重新创建my_index

DELETE my_index
PUT my_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "number_one":{
          "type": "integer"
        },
        "number_two":{
          "type": "integer",
          "coerce":false
        }
      }
    }
  }
}

(2)写入一条测试文档

PUT my_index/my_type/1
{
  "number_one":"10"
}

(3)写入另外一条测试文档

PUT my_index/my_type/1
{
  "number_two":"10"
}

返回

{
  "error": {
    "root_cause": [
      {
        "type": "mapper_parsing_exception",
        "reason": "failed to parse [number_two]"
      }
    ],
    "type": "mapper_parsing_exception",
    "reason": "failed to parse [number_two]",
    "caused_by": {
      "type": "illegal_argument_exception",
      "reason": "Integer value passed as String"
    }
  },
  "status": 400
}

copy_to
copy_to属性用于配置自定义的_all字段。换言之,就是多个字段可以被合并成一个超级字段。比如first_name和last_name可以被合并为full_name字段
(1)创建索引插入数据

DELETE my_index
PUT my_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "first_name":{
          "type": "text",
          "copy_to": "full_name"
        },
        "last_name":{
          "type": "text",
          "copy_to": "full_name"
        },
        "full_name":{
          "type": "text"
        }
      }
    }
  }
}
PUT my_index/my_type/1
{
  "first_name":"John",
  "last_name":"Smith"
}

(2)查询

GET my_index/_search
{
  "query": {
    "match": {
      "full_name": {
        "query": "John Smith",
        "operator": "and"
      }
    }
  }
}

返回

{
  "took": 15,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 1,
    "max_score": 0.5753642,
    "hits": [
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "1",
        "_score": 0.5753642,
        "_source": {
          "first_name": "John",
          "last_name": "Smith"
        }
      }
    ]
  }
}

doc_values
doc_values是为了加快排序、聚合操作,在建立倒排索引的时候,额外增加一个列式存储映射,是一个空间换时间的做法。默认是开启的,对于不确定聚合或者排序的字段可以关闭
(1)创建索引

DELETE  my_index
PUT my_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "status_code":{
          "type": "keyword"
        },
        "session_id":{
          "type": "keyword",
          "doc_values":false
        }
      }
    }
  }
}

dynamic
dynamic属性用于检测新发现的字段,有三个取值:

true:新发现的字段添加到映射中。(默认)
flase:新检测的字段被忽略。必须显式添加新字段。
strict:如果检测到新字段,就会引发异常并拒绝文档
(1)新建索引
取值为strict,非布尔值要加引号

DELETE my_index
PUT my_index
{
  "mappings": {
    "my_type": {
      "dynamic":"strict",
      "properties": {
        "title":{"type": "text"}
      }
    }
  }
}

(2)插入新文档

PUT my_index/my_type/1
{
  "title":"test",
  "content":"test dynamic"
}

返回

{
  "error": {
    "root_cause": [
      {
        "type": "strict_dynamic_mapping_exception",
        "reason": "mapping set to strict, dynamic introduction of [content] within [my_type] is not allowed"
      }
    ],
    "type": "strict_dynamic_mapping_exception",
    "reason": "mapping set to strict, dynamic introduction of [content] within [my_type] is not allowed"
  },
  "status": 400
}

enabled
ElasticSearch默认会索引所有的字段,enabled设为false的字段,es会跳过字段内容,该字段只能从_source中获取,但是不可搜索。而且字段可以是任意类型。
(1)新建索引,插入文档

DELETE my_index
PUT my_index
{
  "mappings": {
    "my_type":{
    "properties":{
      "name":{"enabled":false}
    }
  }
  }
}
PUT my_index/my_type/1
{
  "title":"test enabled",
  "name":"chengyuqiang"
}

(2)查看文档

GET my_index/my_type/1

返回

{
  "_index": "my_index",
  "_type": "my_type",
  "_id": "1",
  "_version": 1,
  "found": true,
  "_source": {
    "title": "test enabled",
    "name": "chengyuqiang"
  }
}

(3)搜索字段

GET my_index/_search
{
  "query": {
    "match": {
      "name": "chengyuqiang"
    }
  }
}

返回

{
  "took": 1,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 0,
    "max_score": null,
    "hits": []
  }
}

ignore_above
ignore_above用于指定字段索引和存储长度最大值,超过最大值会被忽略
(1)创建索引添加数据

DELETE my_index
PUT my_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "message":{
          "type": "keyword",
          "ignore_above": 20
        }
      }
    }
  }
}
PUT my_index/my_type/1
{
  "message":"Syntax error"
}
PUT my_index/my_type/2 
{
  "message": "Syntax error with some long stacktrace"
}

(2)查询

GET my_index/_search
{
  "size": 0,
  "aggs": {
    "messages": {
      "terms": {
        "field": "message"
      }
    }
  }
}

返回结果

{
  "took": 326,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": 0,
    "hits": []
  },
  "aggregations": {
    "messages": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "Syntax error",
          "doc_count": 1
        }
      ]
    }
  }
}

mpping中指定了ignore_above字段的最大长度为20,第一个文档的字段长小于20,因此索引成功,第二个超过20,因此不索引,返回结果只有“Syntax error”。

ignore_malformed(忽略不规则的)
ignore_malformed可以忽略不规则数据。对于账号userid字段,有人可能填写的是 整数类型,也有人填写的是邮件格式。给一个字段索引不合适的数据类型发生异常,导致整个文档索引失败。如果ignore_malformed参数设为true,异常会被忽略,出异常的字段不会被索引,其它字段正常索引。
(1)创建索引

DELETE my_index
PUT my_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "number_one":{
          "type": "integer",
          "ignore_malformed": true
        },
        "number_two":{
          "type": "integer"
        }
      }
    }
  }
}

(2)添加数据

PUT my_index/my_type/1
{
  "text":       "Some text value",
  "number_one": "foo" 
}
PUT my_index/my_type/2
{
  "text":       "Some text value",
  "number_two": "foo" 
}

结果返回

{
  "error": {
    "root_cause": [
      {
        "type": "mapper_parsing_exception",
        "reason": "failed to parse [number_two]"
      }
    ],
    "type": "mapper_parsing_exception",
    "reason": "failed to parse [number_two]",
    "caused_by": {
      "type": "number_format_exception",
      "reason": "For input string: \"foo\""
    }
  },
  "status": 400
}

上面的例子number_one接受integer类型,ignore_malformed属性设置为true,因此文档一种能写入成功;number_two接受integer类型,类型ignore_malformed属性为false,因此写入失败

index
index属性指定字段是否索引,不所以也就不可搜索,取值可以为true或者false。

fields
fields可以让同一文本有多种不同的索引方式,比如一个String类型的字段,可以使用text类型做全文检索,使用keyword类型做聚合和排序
(1)放入数据

DELETE my_index
PUT my_index
{
  "mappings": {
    "my_type": {
      "properties": {
        "city":{
          "type": "text",
          "fields": {
            "raw":{
              "type": "keyword"
            }
          }
        }
      }
    }
  }
}
PUT my_index/my_type/1
{
  "city": "New York"
}
 
PUT my_index/my_type/2
{
  "city": "York"
}

(2)查询

GET my_index/_search
{
  "query": {
    "match": {
      "city": "york"
    }
  },
  "sort": {
      "city.raw": {
        "order": "asc"
      }
  },
    "aggs":{
      "Cities":{
        "terms": {
          "field": "city.raw"
        }
      }
    }
}

返回结果

{
  "took": 43,
  "timed_out": false,
  "_shards": {
    "total": 5,
    "successful": 5,
    "skipped": 0,
    "failed": 0
  },
  "hits": {
    "total": 2,
    "max_score": null,
    "hits": [
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "1",
        "_score": null,
        "_source": {
          "city": "New York"
        },
        "sort": [
          "New York"
        ]
      },
      {
        "_index": "my_index",
        "_type": "my_type",
        "_id": "2",
        "_score": null,
        "_source": {
          "city": "York"
        },
        "sort": [
          "York"
        ]
      }
    ]
  },
  "aggregations": {
    "Cities": {
      "doc_count_error_upper_bound": 0,
      "sum_other_doc_count": 0,
      "buckets": [
        {
          "key": "New York",
          "doc_count": 1
        },
        {
          "key": "York",
          "doc_count": 1
        }
      ]
    }
  }
}

下一篇:ElasticSearch学习(十四) --高级查询

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值