Leetcode#115 Distinct Subsequences

原题地址

 

转化为求非重路径数问题,用动态规划求解,这种方法还挺常见的

举个例子,S="aabb",T="ab"。构造如下地图("."表示空位,"^"表示起点,"$"表示终点),我们的目标就是求从起点到终点一共有多少条路径。

  a  b
a ^  .
a .  .
b .  .
b .  $    

对于任意一个位置,不妨设坐标为(i, j),则有:如果S[i]等于T[j],可以向走也可以向右下走;否则只能向

设count[i][j]表示从(i, j)开始的走法,则count[i][j] = count[i+1][j](如果S[i]不等于T[j]) 或 count[i+1][j] + count[i+1][j+1](如果S[i]等于T[j])。

由于求count[i][j]只用到了count[i+1][X],所以在具体实现的时候可以用一维数组压缩存储状态空间。

 

代码:

 1 int numDistinct(string S, string T) {
 2   int slen = S.length();
 3   int tlen = T.length();
 4   vector<int> count(tlen + 1, 0);
 5 
 6   count[tlen] = 1;
 7 
 8   for (int i = slen - 1; i >= 0; i--)
 9     for (int j = 0; j < tlen; j++)
10       count[j] += S[i] == T[j] ? count[j + 1] : 0;
11 
12   return count[0];
13 }

 

转载于:https://www.cnblogs.com/boring09/p/4238856.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值