转化为求非重路径数问题,用动态规划求解,这种方法还挺常见的
举个例子,S="aabb",T="ab"。构造如下地图("."表示空位,"^"表示起点,"$"表示终点),我们的目标就是求从起点到终点一共有多少条路径。
a b a ^ . a . . b . . b . $
对于任意一个位置,不妨设坐标为(i, j),则有:如果S[i]等于T[j],可以向下走也可以向右下走;否则只能向下走
设count[i][j]表示从(i, j)开始的走法,则count[i][j] = count[i+1][j](如果S[i]不等于T[j]) 或 count[i+1][j] + count[i+1][j+1](如果S[i]等于T[j])。
由于求count[i][j]只用到了count[i+1][X],所以在具体实现的时候可以用一维数组压缩存储状态空间。
代码:
1 int numDistinct(string S, string T) { 2 int slen = S.length(); 3 int tlen = T.length(); 4 vector<int> count(tlen + 1, 0); 5 6 count[tlen] = 1; 7 8 for (int i = slen - 1; i >= 0; i--) 9 for (int j = 0; j < tlen; j++) 10 count[j] += S[i] == T[j] ? count[j + 1] : 0; 11 12 return count[0]; 13 }