1.迭代
通过for循环来遍历一个list或者tuple,这种遍历就叫迭代(Iteration),在Python中用for in 语句来实现迭代。
Python的for循环不仅可以用在list和tuple,还可以用在其他可迭代对象,比如dict就可以迭代:
d={'a':1,'b':2,'c':3} # 循环打印key for key in d: print(key) # 默认循环的是key for value in d.values(): print(value)
迭代字符串对象:
# 迭代一个str对象 s='adcsddd' for x in s: print(x)
只要作用于一个可迭代对象,for循环就可以正常运行,通过collections模块的Iterable类型判断
print(isinstance('adc',Iterable)) # 判断list是否可迭代 print(isinstance([1,2,3],Iterable)) # 判断123是否可迭代 print(isinstance(123,Iterable))
输出结果:
True
True
False
Python内置的enumerate函数可以把一个list变成下标索引-元素对:
for i, value in enumerate(['a','b','c']): print(i,value)
输出结果:
0 a
1 b
2 c
在for循环中同时引用两个变量:
for x,y in[(1,2),(2,3),(1,3)]: print(x,y)
输出结果:
1 2
2 3
1 3
2.列表生成式
Python内置了可以用来生成list的生成式:
# 生成list[1,2,3,4,5,6,7,8,9,10] print(list(range(1,11)))
输出结果:
[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
生成[1*1,2*2...,10*10]:
L=[] for x in range(1,11): L.append(x*x) print(L) # 可简写 L1=[x*x for x in range(1,11)] print(L1)
输出结果:
[1, 4, 9, 16, 25, 36, 49, 64, 81, 100]
for循环后面可以加入if条件来生成符合条件的元素:
# 筛选出仅偶数的平方的元素 L2=[x*x for x in range(1,11) if x%2==0] print(L2)
输出结果:
[4, 16, 36, 64, 100]
使用两层循环,生成全排列:
L3=[m+n for m in 'ABC' for n in '123'] print(L3)
输出结果:
['A1', 'A2', 'A3', 'B1', 'B2', 'B3', 'C1', 'C2', 'C3']
for循环可以同时使用两个甚至多个变量,同时迭代dict中key和value:
for k, v in {'a':1,'b':2}.items(): print(k,'=',v)
输出结果:
a = 1
b = 2
把一个list中所有的字符串变成小写:
L5=[s.lower() for s in ['qQQA','Acd','asbdD']] print(L5)
输出结果:
['qqqa', 'acd', 'asbdd']
3.生成器
在Python中,一边循环一边计算的机智,成为生成器:genertator
第一种创建方式:把一个列表生成式的[]改成()
# 列表生成式 List1=[x*x for x in range(10)] # 生成器 g=(x*x for x in range(10))
如果要一个一个打印出来,可以通过next()函数获得generator的下一个返回值。
# generator是可迭代对象,可以使用for循环 for n in g: print(n)
我们创建了一个generator后,基本上永远不会调用next()
,而是通过for
循环来迭代它,并且不需要关心StopIteration
的错误。
第二种创建方式:在一个函数定义中包含yield关键字
def f(max): n,a,b=0,0,1 while n<max: yield b a,b=b,a+b n=n+1 return 'done' for m in f(6): print(m)
输出结果:
1
1
2
3
5
8
generator和函数的执行流程不一样,函数是顺序执行的,遇到return语句或者最后一行函数语句就返回。而变成generator的函数,在每次调用next()的时候执行,遇到yield语句返回,再次执行时从上次返回的yield语句处继续执行。
但是用for
循环调用generator时,发现拿不到generator的return
语句的返回值。如果想要拿到返回值,必须捕获StopIteration
错误,返回值包含在StopIteration
的value
中:
g1=f(6) while True: try: x=next(g1) print('g:',x) except StopIteration as e: print(e.value) break
输出结果:
g: 1
g: 1
g: 2
g: 3
g: 5
g: 8
done
4.迭代器
可以直接作用于for循环的数据类型有以下几种:
1.集合数据类型:list、tuple、dict、set、str。
2.generator类型,包括生成器和带yield的generator function。
这些可以直接作用于for循环的对象统称为可迭代对象:Iterable。
可以使用isinstance判断一个对象是否是Iterable对象:
from collections import Iterable print(isinstance([],Iterable)) print(isinstance(123,Iterable))
输出结果:
True
False
可以被next()函数调用并不断返回下一个值得对象称为迭代器:Iterator。可以使用isinstance判断一个对象是否是Iterator对象:
from collections import Iterator print(isinstance((x*x for x in range(10)),Iterator)) print(isinstance([],Iterator))
输出结果:
True
False
生成器是Iterator对象,可以使用iter()函数把Iterable变成Iterator:
print(isinstance(iter([]),Iterator))
输出结果:
True
Python的Iterator
对象表示的是一个数据流,Iterator对象可以被next()
函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration
错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()
函数实现按需计算下一个数据,所以Iterator
的计算是惰性的,只有在需要返回下一个数据时它才会计算。
Iterator
甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。