BZOJ2818 Gcd

题目链接:https://vjudge.net/problem/HYSBZ-2818

知识点:  欧拉函数、积性函数

解题思路:

  对于有序数对 \((x,y)\),若其满足 \(gcd(x,y)=p\)(\(p\)为质数),我们可以将 \(x\) 和 \(y\) 同时除以 \(p\),上式就变成了\(gcd(x',y')=1\),那么对于一个 \(x\) ,满足条件的 \(y\) 的个数为 \(\varphi (x)\) 。对于 \([1,N]\) 中的每一个质数 \(p\),我们可以通过求 \([1,N/p]\) 这个范围内的欧拉函数的总和来求得 \(gcd(x,y) = p\) 的无序数对的个数,考虑到题目中的数对是有序的,所以还需要将无序数对乘二。还有一点是当 \(x\) 和 \(y\) 都是相同的质数时需要特殊处理。

  求前 \(n\) 个数的欧拉函数值的算法主要就是利用欧拉函数是积性函数的性质和一条欧拉函数的经典计算式:

  \(\varphi(n) = \prod_{i=1}^{k} (p_i-1)p_i^{c_i-1}\).

AC代码:

 1 #include <bits/stdc++.h>
 2 
 3 using namespace std;
 4 typedef long long LL;
 5 const int maxn = 1e7+5;
 6 bool check[maxn];
 7 int phi[maxn];
 8 int prime[maxn>>1],tot;
 9 
10 void init(int N){
11     phi[1]=1;
12     tot=0;
13     for(int i=2;i<=N;i++){
14         if(!check[i]){
15             phi[i]=i-1;
16             prime[tot++]=i;
17         }
18         for(int j=0;j<tot&&(LL)i*prime[j]<=N;j++){
19             check[i*prime[j]]=true;
20             if(i%prime[j]==0){
21                 phi[i*prime[j]]=phi[i]*prime[j];
22                 break;
23             } else{
24                 phi[i*prime[j]]=phi[i]*(prime[j]-1);
25             }
26         }
27     }
28 }
29 
30 int main(){
31     LL ans=0;
32     int N;
33     scanf("%d",&N);
34     init(N);
35 
36     for(int i=0;i<tot;i++){
37         for(int j=1;j<=N/prime[i];j++)
38             ans+=phi[j]*2;
39         ans--;
40     }
41     printf("%lld\n",ans);
42     return 0;
43 }

 

转载于:https://www.cnblogs.com/Blogggggg/p/8933033.html

weixin073智慧旅游平台开发微信小程序+ssm后端毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
python017基于Python贫困生资助管理系统带vue前后端分离毕业源码案例设计 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值