我们来看看一个问题
任意给定正整数n,请问在小于等于n的正整数之中,有多少个与n构成互质关系?(比如,在1到8之中,有多少个数与8构成互质关系?)
计算这个值的方法就叫做欧拉函数,以φ(n)表示。在1到8之中,与8形成互质关系的是1、3、5、7,所以 φ(n) = 4。
φ(n) 的计算方法并不复杂,但是为了得到最后那个公式,需要一步步讨论。
第一种情况
如果n=1,则 φ(1) = 1 。因为1与任何数(包括自身)都构成互质关系。
第二种情况
如果n是质数,则 φ(n)=n-1 。因为质数与小于它的每一个数,都构成互质关系。比如5与1、2、3、4都构成互质关系。
第三种情况
如果n是质数的某一个次方,即 n = p^k (p为质数,k为大于等于1的整数),则

比如 φ(8) = φ(2^3) =2^3 - 2^2 = 8 -4 = 4。
这是因为只有当一个数不包含质数p,才可能与n互质。而包含质数p的数一共有p^(k-1)个,即1×p、2×p、3×p、...、p^(k-1)×p,把它们去除,剩下的就是与n互质的数。
上面的式子还可以写成下面的形式:

欧拉函数φ(n)用于计算小于等于n的正整数中与n互质的数量。对于不同情况,欧拉函数有不同的计算方法:n=1时φ(1)=1;n为质数时φ(n)=n-1;n为质数的幂时φ(n)=n-p^(k-1),其中p为质数,k为指数;n为互质整数乘积时φ(n)=φ(p1)φ(p2)。最后,所有正整数的φ(n)可以通过质因数分解并应用这些规则计算得出。
最低0.47元/天 解锁文章
1154

被折叠的 条评论
为什么被折叠?



