体验Impress.js

本文介绍如何使用Impress.js创建H5版的Prezi演示文稿,包括基本设置、内容布局及高级用法。只需几分钟,即可掌握Impress.js的核心操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

用腻了ppt,prezi的风格看起来更酷一点儿,无意中得知有Impress.js这么一个H5版的prezi,nice,值得一试。

关于Impress.js,网上教程很多,但说实话就跟教小朋友一样,一步一步的,又无聊又不得要领。

要我说,学Impress.js,只要几分钟~

  1. 引入Impress.js,注意要在body末尾,也就是</body>标签前引用,这样里面的代码才会在你的html加载完成后再执行。

    <script src=""></script>
    ""里面填url。可以是你下载到本地的,那么这么写
    "./static/js/impress.js"
    也可以是来自百度静态资源库,那么这么写
    "http://apps.bdimg.com/libs/impress.js/0.5.3/impress.js"
    也可以直接引用作者的示例工程的
    "http://impress.github.io/impress.js/js/impress.js"
    甚至直接引用我fork的
    "http://zhengxiaoyao0716.github.io/FunCodeImpress/static/js/impress.js"

  2. 再在body末尾,也就是</body>前加一句

    <script>impress().init();</script>
    这样Impress.js就初始化了。

  3. 提供一个id为impress的div,用来展示。但在这之前,我们最好先提供一个class为impress-not-supported的div,里面再建立一个class为fallback-message的div(其实直接把fallback-message补充到之前的div的class里也成),然后在其内写上如果浏览器不支持Impress.js时的提示。是的,网上的教程基本都这么说的,然并卵,你的提示并没有如其名般的仅在不支持时显示。为什么呢?因为你还缺少一个css样式。Impress.js作者建议我们定义自己的css样式,怎么定义可以参照他提供的impress-demo.css。(然而我直接照搬引用了~就是懒~~~怎么引用?见1,跟那差不多)

  4. 然后,在id为impress的div里,你就可以写自己的内容了。我不会告诉你怎么一步步去写,无聊死了。你可以先设想有一个很大的平面,然后在上面放上一块块的内容。每一块内容就是一个div,指定其class为step,这样浏览时就会按定义的先后顺序逐一浏览它们。然后再为其增加一些属性,来确定它应该显示在什么坐标上(data-x="?" data-y="?"),以什么样的旋转角度(2维:data-rotate="?",立体:data-rotate-x/y/z="?"),多大的大小(data-scale="?")

  5. 最后是一些高级的用法:指定一个class为overview的空白div,把它的坐标位置、大小、旋转设定好,比如坐标设置在所有整个平面的中心,大小为整个平面,于是你就得到了一个全局的俯视图。为一个step的class增加slide标签,那么你就得到了一张带白色背景和一些特殊样式的类似ppt单张的div,具体有还哪些样式,怎么用,多看一些示例的源码就知道了。或者,直接看impress-demo.css里面怎么定义的,当然,这些样式是需要引入impress-demo.css的,你不引入的话是没有的。也可以自己修改定义,事实上原作者建议你这么做。

ok,看完以上内容,应该就可以做自己的H5版prezi了。因为太简单了所以懒得好好组织语言了。讲的不明白的地方看看我的一个练手的源码吧。

我的GitHub上的一个练手的作品

转载于:https://www.cnblogs.com/zhengxiaoyao0716/p/5914919.html

内容概要:文章介绍了DeepSeek在国内智能问数(smart querying over data)领域的实战应用。DeepSeek是一款国内研发的开源大语言模型(LLM),具备强大的中文理解、推理和生成能力,尤其适用于企业中文环境下的智能问答、知识检索等。它具有数据可控性强的特点,可以自部署、私有化,支持结合企业内部数据打造定制化智能问数系统。智能问数是指用户通过自然语言提问,系统基于结构化或非结构化数据自动生成精准答案。DeepSeek在此过程中负责问题理解、查询生成、多轮对话和答案解释等核心环节。文章还详细展示了从问题理解、查询生成到答案生成的具体步骤,并介绍了关键技术如RAG、Schema-aware prompt等的应用。最后,文章通过多个行业案例说明了DeepSeek的实际应用效果,显著降低了数据使用的门槛。 适合人群:从事数据分析、企业信息化建设的相关从业人员,尤其是对智能化数据处理感兴趣的业务和技术人员。 使用场景及目标:①帮助业务人员通过自然语言直接获取数据洞察;②降低传统BI工具的操作难度,提高数据分析效率;③为技术团队提供智能问数系统的架构设计和技术实现参考。 阅读建议:此资源不仅涵盖了DeepSeek的技术细节,还提供了丰富的实战案例,建议读者结合自身业务场景,重点关注DeepSeek在不同行业的应用方式及其带来的价值。对于希望深入了解技术实现的读者,可以进一步探索Prompt工程、RAG接入等方面的内容。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值