Book--博弈论浅结

2014-07-11 13:56:42

开门见山吧,巴什博弈不废话,直接找规律, 威佐夫博弈要记住那个公式,还有拓展(因为可能要求求出怎么“取数”),另外有空看一下公式的数学证明。

重点放在一般性博弈!(NIM博弈的n堆拓展及其他各式各样的博弈)
注:这一切建立在Impartial Game(公平游戏)的基础上。
1:PN图的构建
P(previous):必败状态(可理解为前状态面对者胜)
N(next):必胜状态(可理解为下一个状态面对者胜,其实就是当前面对者胜)
 
规律1:该状态为必败状态,当且仅当所有后继都是必胜状态。
规律2:该状态为必胜状态,当且仅当至少一个后继时必败状态。

类似的我们可以推出关于当前状态与其前驱状态的关系。
规律1:该状态为必败状态,当且仅当所有前驱是必胜状态。
规律2:该状态为必胜状态,当且仅当至少一个前驱为必败状态。
(前驱规律有点难,可以根据后继推前驱)
 
特例:没有后继状态(即终态)为必败状态。
 
所以,可以根据终态为P
2:SG函数的运用 
首先,看了佳哥的大白,提供些理论基础。
SG函数需要Sprague-Grundy定理(SG定理)的理论支持。假设这样一个类nim游戏,n堆火柴,每堆有num[ i ]根火柴,可以把这个游戏拆成n个游戏,每个游戏为:有一堆火柴(设为总游戏中的第k堆),每次一个游戏者可以拿至少一个,至多全部,无法拿者输,两个游戏者轮流取。恩恩,建了这样一个问题模型,SG定理:游戏和的SG函数等于各个子游戏SG函数的Nim和。这样,可以用分治的思想简化问题。(所以,Nim中的Bouton定理(即所有数nim和 ?= 0 的判定定理)可以看做SG定理在Nim游戏中的直接应用,因为单堆Nim游戏SG函数为SG(x) = x )

SG函数的难点就在于找必败(必胜状态)然后和单堆nim思路建立联系,或者直接模拟sg函数过程。
主要有两种模拟SG函数的过程:(总结自hdu 1848)
 1:普通直接模拟
#define MAXN 1000
int sg[MAXN + 5];
//num[ 1 , 2 ....] :可以取走的石子个数
//而used数组用于记录后继状态的sg值存在与否
//count:num数组中有效数字总数 

void SG(int x)
{
    memset(sg , 0 , sizeof(sg));
    for(int i = 1; i <= x; i++)
    {
        bool used[MAXN + 5] = {0};
        for(int j = 1; j <= count; j++)
        {
            if(i - num[ j ] >= 0)
                used[ sg [ i - num[ j ] ] ] = 1;
        }
        for(int j = 0; j <= i; j++)
        {
            if(used[j] == 0)
            {
                sg[i] = j;
                break;
            }
        }
    }
}
2:用dfs进行优化
int SG_dfs(int x)
{
   if(sg[x] != -1)
        return sg[x];
    bool used[MAXN + 5] = {0};
    for(int i = 1; i <= count; i++)
    {
        if(x >= num[ i ])
        {
            sg[x - num[i]] = SG_dfs(x - num[i]);
            used[ sg [ x - num[ i ] ] ] = 1;
        }
    }
    for(int i = 0; i <= x; i++)//i <= x可有可无,但为了安全,还是加上
    {
        if(used[i] == 0)
        {
            return sg[x] = i;
        }
    }
}


3:FIB博弈 

引用:http://blog.csdn.net/dgq8211/article/details/7602807

有一堆个数为n的石子,游戏双方轮流取石子,满足:

1)先手不能在第一次把所有的石子取完;

2)之后每次可以取的石子数介于1到对手刚取的石子数的2倍之间(包含1和对手刚取的石子数的2倍)。

约定取走最后一个石子的人为赢家,求必败态。

这个和之前的Wythoff’s Game 和取石子游戏 有一个很大的不同点,就是游戏规则的动态化。之前的规则中,每次可以取的石子的策略集合是基本固定的,但是这次有规则2:一方每次可以取的石子数依赖于对手刚才取的石子数。

这个游戏叫做Fibonacci Nim,肯定和Fibonacci数列:f[n]:1,2,3,5,8,13,21,34,55,89,… 有密切的关系。如果试验一番之后,可以猜测:先手胜当且仅当n不是Fibonacci数。换句话说,必败态构成Fibonacci数列。

就像“Wythoff博弈”需要“Beatty定理”来帮忙一样,这里需要借助“Zeckendorf定理”(齐肯多夫定理):任何正整数可以表示为若干个不连续的Fibonacci数之和。

先看看FIB数列的必败证明:

 

1、当i=2时,先手只能取1颗,显然必败,结论成立。

2、假设当i<=k时,结论成立。

     则当i=k+1时,f[i] = f[k]+f[k-1]。

     则我们可以把这一堆石子看成两堆,简称k堆和k-1堆。

    (一定可以看成两堆,因为假如先手第一次取的石子数大于或等于f[k-1],则后手可以直接取完f[k],因为f[k] < 2*f[k-1])

     对于k-1堆,由假设可知,不论先手怎样取,后手总能取到最后一颗。下面我们分析一下后手最后取的石子数x的情况。

     如果先手第一次取的石子数y>=f[k-1]/3,则这小堆所剩的石子数小于2y,即后手可以直接取完,此时x=f[k-1]-y,则x<=2/3*f[k-1]。

     我们来比较一下2/3*f[k-1]与1/2*f[k]的大小。即4*f[k-1]与3*f[k]的大小,由数学归纳法不难得出,后者大。

     所以我们得到,x<1/2*f[k]。

     即后手取完k-1堆后,先手不能一下取完k堆,所以游戏规则没有改变,则由假设可知,对于k堆,后手仍能取到最后一颗,所以后手必胜。

     即i=k+1时,结论依然成立。

对于不是FIB数,首先进行分解。

 

分解的时候,要取尽量大的Fibonacci数。

比如分解85:85在55和89之间,于是可以写成85=55+30,然后继续分解30,30在21和34之间,所以可以写成30=21+9,

依此类推,最后分解成85=55+21+8+1。

则我们可以把n写成  n = f[a1]+f[a2]+……+f[ap]。(a1>a2>……>ap)

我们令先手先取完f[ap],即最小的这一堆。由于各个f之间不连续,则a(p-1) > ap  + 1,则有f[a(p-1)] > 2*f[ap]。即后手只能取f[a(p-1)]这一堆,且不能一次取完。

此时后手相当于面临这个子游戏(只有f[a(p-1)]这一堆石子,且后手先取)的必败态,即先手一定可以取到这一堆的最后一颗石子。

同理可知,对于以后的每一堆,先手都可以取到这一堆的最后一颗石子,从而获得游戏的胜利。

例:HDU 2516 

明显的FIB博弈模型

 

 

[cpp]  view plain copy
 
  1. #include<iostream>  
  2. #include<cstdio>  
  3. #include<cstring>  
  4. #include<algorithm>  
  5. #include<cmath>  
  6. #include<vector>  
  7. #include<string>  
  8. #include<map>  
  9. #define LL long long  
  10. #define N 1000000  
  11. #define inf 1<<20  
  12. using namespace std;  
  13. int fib[50];  
  14. int main(){  
  15.     fib[0]=1;fib[1]=2;  
  16.     for(int i=2;i<45;i++)  
  17.         fib[i]=fib[i-1]+fib[i-2];  
  18.     int n;  
  19.     while(scanf("%d",&n)!=EOF&&n){  
  20.         int i=0;  
  21.         for(i=0;i<45;i++)  
  22.             if(fib[i]==n)  
  23.                 break;  
  24.         if(i<45)  
  25.             puts("Second win");  
  26.         else  
  27.             puts("First win");  
  28.     }  
  29.     return 0;  
  30. }  

 

转载于:https://www.cnblogs.com/naturepengchen/articles/3837643.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值