BZOJ--2038(莫队,分块)

2015-04-29 21:00:25

题目:莫队经典必A题。

思路:离线处理一下所有询问,对于一个询问,那么设其中有k种颜色的袜子,每种的数量是 a1,a2 ... ak ,那么答案显然是 (a1*(a1-1)/2 + a2*(a2-1)/2 + ... + ak*(ak-1)/2) / [(R-L+1)*(R-L)/2]

  所以相邻询问[L,R] -> [L,R+1]之间可以O(1)转移。所以可用离线莫队搞之,学了两种实现方式,(1)曼哈顿距离最小生成树 (2)分块。

  分析:无论从时间复杂度和空间复杂度上,分块都更优(当然是针对于部分问题)

 

方法一:

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <algorithm>
using namespace std;
 
typedef long long ll;
const int MAXN = 50010;
 
int N,M,block,co[MAXN],num[MAXN];
ll cur_val;
 
struct Node{
    int x,y,id,bid;
    ll A,B;
}p[MAXN];
 
bool cmp(Node a,Node b){ return a.bid == b.bid ? a.y < b.y : a.x < b.x; }
bool cmp2(Node a,Node b){ return a.id <b.id; }
ll Gcd(ll a,ll b){ return b == 0 ? a : Gcd(b,a % b); }
 
ll Sqr(ll x){ return x * x; }
 
void Update(int l,int r,int d){
    for(int i = l; i <= r; ++i){
        cur_val -= Sqr((ll)num[co[i]]);
        num[co[i]] += d;
        cur_val += Sqr((ll)num[co[i]]);
    }
}
 
void Block(){
    sort(p + 1,p + M + 1,cmp);
    int l = 1,r = 0;
    for(int i = 1; i <= M; ++i){
        if(p[i].x < l) Update(p[i].x,l - 1,1);
        if(l < p[i].x) Update(l,p[i].x - 1,-1);
        if(r < p[i].y) Update(r + 1,p[i].y,1);
        if(p[i].y < r) Update(p[i].y + 1,r,-1);
        p[i].A = cur_val - (p[i].y - p[i].x + 1);
        p[i].B = (ll)(p[i].y - p[i].x + 1) * (p[i].y - p[i].x);
        ll g = Gcd(p[i].A,p[i].B);
        p[i].A /= g,p[i].B /= g;
        l = p[i].x;
        r = p[i].y;
    }
    sort(p + 1,p + M + 1,cmp2);
    for(int i = 1; i <= M; ++i) printf("%lld/%lld\n",p[i].A,p[i].B);
}
 
int main(){
    scanf("%d%d",&N,&M);
    block = (int)sqrt(1.0 * N);
    for(int i = 1; i <=N; ++i) scanf("%d",co + i);
    for(int i = 1; i <= M; ++i){
        scanf("%d%d",&p[i].x,&p[i].y);
        p[i].id = i;
        p[i].bid = p[i].x / block;
    }
    Block();
    return 0;
}

 

方法二:最小manhattan mst:

#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <vector>
#include <map>
#include <set>
#include <stack>
#include <queue>
#include <string>
#include <iostream>
#include <algorithm>
using namespace std;
 
#define MEM(a,b) memset(a,b,sizeof(a))
#define REP(i,n) for(int i=0;i<(n);++i)
#define FOR(i,a,b) for(int i=(a);i<=(b);++i)
#define getmid(l,r) ((l) + ((r) - (l)) / 2)
#define MP(a,b) make_pair(a,b)
#define PB(a) push_back(a)
 
typedef long long ll;
typedef pair<int,int> pii;
const double eps = 1e-8;
const int INF = (1 << 30) - 1;
const int MAXN = 50010;
 
int N,M,ecnt;
int A[MAXN],B[MAXN],co[MAXN],fa[MAXN];
int first[MAXN],num[MAXN];
ll cur_val,rlt[MAXN][2];
vector<int> G[MAXN];
 
struct edge{
    int u,v,c,next;
    bool operator < (const edge a)const { return c < a.c; }
}e[MAXN << 2],E[MAXN << 1];
 
void add_edge(int u,int v,int c){
    e[++ecnt].u = u;
    e[ecnt].v = v;
    e[ecnt].c = c;
}
 
struct Node{
    int x,y,id;
    bool operator < (const Node a)const { return x == a.x ? y < a.y : x < a.x; }
}p[MAXN],pb[MAXN];
 
struct BIT{
    int tmax,c[MAXN],ps[MAXN];
    void init(int tmp){
        tmax = tmp;
        FOR(i,1,tmax) c[i] = INF;
        MEM(ps,-1);
    }
    int lowbit(int x){ return x & (-x); }
    void update(int x,int d,int pos){
        while(x){
            if(d < c[x]){
                c[x] = d;
                ps[x] = pos;
            }
            x -= lowbit(x);
        }
    }
    int get(int x){
        int res = INF,pos = -1;
        while(x <= tmax){
            if(c[x] < res){
                res = c[x];
                pos = ps[x];
            }
            x += lowbit(x);
        }
        return pos;
    }
}bit;
 
int Dis(int a,int b){ return abs(p[a].x - p[b].x) + abs(p[a].y - p[b].y); }
int Find(int x){ return fa[x] == x ? x : fa[x] = Find(fa[x]); }
ll Gcd(ll a,ll b){ return b == 0 ? a : Gcd(b,a % b); }
 
void Manhattan_mst(){
    for(int dir = 1; dir <= 4; ++dir){
        if(dir == 2 || dir == 4)
            FOR(i,1,M) swap(p[i].x,p[i].y);
        else if(dir == 3)
            FOR(i,1,M) p[i].y = -p[i].y;
        sort(p + 1,p + M + 1);
        FOR(i,1,M) A[i] = B[i] = p[i].y - p[i].x;
        sort(B + 1,B + M + 1);
        int sz = unique(B + 1,B + M + 1) - B;
        bit.init(sz);
        for(int i = M; i >= 1; --i){
            int pos = lower_bound(B + 1,B + sz + 1,A[i]) - B;
            int ans = bit.get(pos);
            if(ans != -1)
                add_edge(p[i].id,p[ans].id,Dis(i,ans));
            bit.update(pos,p[i].x + p[i].y,i);
        }
    }
    //Kruskal
    sort(e + 1,e + ecnt + 1);
    FOR(i,1,ecnt){
        int x = Find(e[i].u);
        int y = Find(e[i].v);
        if(x != y){
            fa[y] = x;
            G[e[i].u].PB(e[i].v);
            G[e[i].v].PB(e[i].u);
        }
    }
}
 
ll Cal(int v){ return (ll)v * (v - 1); }
 
void Add(int l,int r){
    FOR(i,l,r){
        cur_val -= Cal(num[co[i]]);
        cur_val += Cal(++num[co[i]]);
    }
}
 
void Del(int l,int r){
    FOR(i,l,r){
        cur_val -= Cal(num[co[i]]);
        cur_val += Cal(--num[co[i]]);
    }
}
 
void Dfs(int l1,int r1,int l2,int r2,int id,int pre){
    if(l2 < l1) Add(l2,l1 - 1);
    if(l2 > l1) Del(l1,l2 - 1);
    if(r2 > r1) Add(r1 + 1,r2);
    if(r2 < r1) Del(r2 + 1,r1);
    rlt[id][0] = cur_val;
    rlt[id][1] = (ll)(r2 - l2 + 1) * (r2 - l2);
    for(int i = 0; i < G[id].size(); ++i){
        int v = G[id][i];
        if(v == pre) continue;
        Dfs(l2,r2,pb[v].x,pb[v].y,v,id);
    }
    if(l2 < l1) Del(l2,l1 - 1);
    if(l2 > l1) Add(l1,l2 - 1);
    if(r2 > r1) Del(r1 + 1,r2);
    if(r2 < r1) Add(r2 + 1,r1);
}
 
void Init(){
    MEM(first,-1);
    ecnt = 0;
    FOR(i,1,M) fa[i] = i;
    MEM(num,0);
    cur_val = 0;
}
 
int main(){
    while(scanf("%d%d",&N,&M) != EOF){
        FOR(i,1,N) scanf("%d",&co[i]);
        FOR(i,1,M){
            scanf("%d%d",&p[i].x,&p[i].y);
            p[i].id = i;
            pb[i] = p[i];
        }
        Init();
        Manhattan_mst();
        Dfs(1,0,pb[1].x,pb[1].y,1,-1);
        FOR(i,1,M){
            ll g = Gcd(rlt[i][0],rlt[i][1]);
            printf("%lld/%lld\n",rlt[i][0] / g,rlt[i][1] / g);
        }
    }
    return 0;
}

 

转载于:https://www.cnblogs.com/naturepengchen/articles/4467070.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值