bzoj1731/poj3169[Usaco2005 dec]Layout 排队布局

题目链接:bzoj的poj的

题目大意:

有N 头奶牛正在排队,它们的编号为1 到N,约翰要给它们安排合适的排队位置,满足以下条件:

• 首先,所有奶牛要站在一条直线上。由于是排队,所以编号小的奶牛要靠前,不能让编号大的奶牛插队。但同一个位置可以容纳多头奶牛,这是因为它们非常苗条的缘故

• 奶牛喜欢和朋友靠得近点。朋友关系有F 对,其中第Ai 头奶牛和第Bi 头奶牛是第i 对朋友,它们的距离不能超过Ci

• 奶牛还要和讨厌的同类保持距离。敌对关系有E 对,其中第Xi 头奶牛和第Yi 头奶牛是第i 对敌人,它们的距离不能少于Zi

找到一个合理的站位方法,满足所有奶牛的要求,而且让1 号奶牛和N 号奶牛间的距离尽量大?


题解:

差分约束+Bellman-Ford判负环

[QwQ我也是认真做的差分约束啊,就对了两个点QwQ不过还好构图没错]

嗯 构图没错就先说构图,很明显啊题目已经。

设d[i]为i到1号奶牛的距离。

看第一点,我们就要满足d[i-1]<=d[i];第二点就是要求满足d[Bi]-d[Ai]<=Ci;第三点就是要满足d[Yi]-d[Xi]>=Zi,即d[Xi]<=d[Yi]-Zi。

图就弄好了。于是我错在哪呢?我二分距离了= =

实际上,跑最短路的话,d[i]一定是与d[1]的差值最大的。就是说你算出来的d[n]已经满足了和1号奶牛的距离尽量大的条件。

为什么?这里转一下hyc大学霸的证明(额 可能还含有别的什么orz):

=========================================================

最短路的话,把所有约束都化成x-y<=k的形式,然后add(y,x,k)就可以了,这样跑最短路保证d[x]<=d[y]+k。

如果差分约束有解,那么一定有无穷解,因为我们可以把所有值同时加上k,所有约束同样成立。

所以问题往往是某两个数的差值的最大值 或者 最小值。

可以证明,跑最短路的话,d[x]一定是与d[st]的差值最大的。

因为你的约束都是x-y<=k的形式,如果x与st联通,那么肯定是有几个表达式x-a1<=k1,a1-a2<=k2,...,ax-st<=kx,

把他们全部加起来有x-st<=xxx,我们用类似xxx的值建边的,所以求出来的一定是满足条件的最大的x。

在这个时候,如果你要求最小的x,那么,你就把x作为起点,st作为终点跑最短路,求出来的就是最小的差值的相反数。

=========================================================

所以你只用跑一次spfa就好了。

无解的话,就是图中有负环。 因为负环,就说明有一些约束相加得到:x-k<=x,并且k是负数,显然不成立,故无解。

那个可以无限的就看看d[n]是不是也无限,是的话就输出-2,而不是输出一个无限咯。

#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<queue>
#include<algorithm>
#include<iostream>
using namespace std;
#define maxn 22100
#define N 1010

const int inf=1e9;
struct node
{
	int x,y,c,next;
}a[maxn];int len,first[N];
int n,cnt[N],d[N];bool v[N];
void ins(int x,int y,int c)
{
	a[++len].x=x;a[len].y=y;a[len].c=c;
	a[len].next=first[x];first[x]=len;
}
queue<int> q;
int BM()
{
	while (!q.empty()) q.pop();
	for (int i=2;i<=n;i++) d[i]=inf,cnt[i]=v[i]=0;
	q.push(1);d[1]=0;cnt[1]=v[1]=1;
	while (!q.empty())
	{
		int x=q.front();q.pop();v[x]=0;
		for (int k=first[x];k!=-1;k=a[k].next)
		{
			int y=a[k].y;
			if (d[y]>d[x]+a[k].c)
			{
				d[y]=d[x]+a[k].c;
				if (!v[y])
				{
					v[y]=1;q.push(y);
					cnt[y]++;
				}if (cnt[y]>n) return -1;
			}
		}
	}if (d[n]>inf-10) return -2;
	return d[n];
}
int main()
{
	freopen("layout.in","r",stdin);
	freopen("layout.out","w",stdout);
	int i,p,q,x,y,c,l,r,mid,ret;
	len=0;memset(first,-1,sizeof(first));
	scanf("%d%d%d",&n,&p,&q);
	for (i=2;i<=n;i++) ins(i,i-1,0);
	for (i=1;i<=p;i++)
	{
		scanf("%d%d%d",&x,&y,&c);
		if (x>y){int tt=x;x=y;y=tt;}
		ins(x,y,c);
	}
	for (i=1;i<=q;i++)
	{
		scanf("%d%d%d",&x,&y,&c);
		if (x>y){int tt=x;x=y;y=tt;}
		ins(y,x,-c);
	}
	printf("%d\n",BM());
	return 0;
}


转载于:https://www.cnblogs.com/Euryale-Rose/p/6527832.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值