【莫比乌斯反演】【BZOJ2820】【XSY1721】GCD

莫比乌斯反演入门题

\(Description\)
    神犇GJS虐完数论后给zzHGR出了一个数论题。
    
    给定n,m,求1≤x≤n,1≤y≤m且gcd(x,y)为质数的(x,y)有多少对。
    
    zzHGR必然不会了,于是向你来请教……
    
    多组输入。
\(Input\)
     第一行一个整数T,表述数据组数。

     接下来T行,每行两个正整数,表示n,m。
\(Output\)
     T行,每行一个整数表示第i组数据的结果
     
\(Sample Input\)
    2
    10 10
    100 100
\(Sample Output\)
    30
    2791
    
\(HINT\)
    T=10000
    n,m≤107

这道题是莫比乌斯反演入门题,对于刚接触莫比乌斯反演的萌新很友好,如果没有了解过莫比乌斯反演的点这里

可以发现这道题最后求的式子就是$\(\sum_{k=1}^n\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=k](k\in prime)\),于是我们就直接开始推式子了。
\[\sum_{k=1}^n\sum_{i=1}^n\sum_{j=1}^m[gcd(i,j)=k](k\in prime)\]
我们看到\([gcd(i,j)=k]\),就会有一种将\(k\)改成\(1\)的冲动,于是我们冲动的将\(k\)除掉
\[=\sum_{k=1}^n\sum_{i=1}^{\left\lfloor\frac{n}{k}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{k}\right\rfloor}[gcd(i,j)=1]\]
接着,莫比乌斯函数的性质又出现了:\(\sum_{d\mid n}\mu(d)=[n=1]\),这个东西特别有用,可以帮助我们把\(gcd[i,j]=1\)消掉,于是我们考虑将\(n\)替换成\([gcd(i,j)=1]\),得到
\[=\sum_{k=1}^n\sum_{i=1}^{\left\lfloor\frac{n}{k}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{k}\right\rfloor}\sum_{d\mid gcd(i,j)}\mu(d)\]
此时我们可以看到多出现了一个\(d\),于是我们考虑将\(d\)提前枚举,因为\(d\mid gcd(i,j)且i<= \left\lfloor\frac{n}{k}\right\rfloor,j<=\left\lfloor\frac{m}{k}\right\rfloor\),所以\(d<=min(\left\lfloor\frac{n}{k}\right\rfloor,\left\lfloor\frac{m}{k}\right\rfloor)\),我们假设\(n<=m\),则有\(d<=\left\lfloor\frac{n}{k}\right\rfloor\),而此时枚举出来的\(d\)并不一定满足\(d\mid gcd(i,j)\),所以最后我们还要加一个判断
\[=\sum_{k=1}^n\sum_{d=1}^{\left\lfloor\frac{n}{k}\right\rfloor}\mu(d)\sum_{i=1}^{\left\lfloor\frac{n}{k}\right\rfloor}\sum_{j=1}^{\left\lfloor\frac{m}{k}\right\rfloor}[d\mid gcd(i,j)]\]
这时我们发现后面那个\([d\mid gcd(i,j)]\)又长又臭,于是我们发现只要\(d\)满足\([d\mid i] 且 [d\mid j]\),就一定满足\([d\mid gcd(i,j)]\)
\[=\sum_{k=1}^n\sum_{d=1}^{\left\lfloor\frac{n}{k}\right\rfloor}\mu(d)\sum_{i=1}^{\left\lfloor\frac{n}{k}\right\rfloor}[d\mid i]\sum_{j=1}^{\left\lfloor\frac{m}{k}\right\rfloor}[d\mid j]\]
我们发现式子里的\(\sum_{i=1}^{\left\lfloor\frac{n}{k}\right\rfloor}[d\mid i]\sum_{j=1}^{\left\lfloor\frac{m}{k}\right\rfloor}[d\mid j]\)还是很丑,于是我们考虑对于一个满足普遍性的式子\(\sum_{i=1}^n[x\mid i]\),它的本质就是求满足\(kx<=n\)\(k\)的个数,可以轻易得到\(k=\frac{n}{x}\),于是我们可以把\(\sum_{i=1}^{\left\lfloor\frac{n}{k}\right\rfloor}[d\mid i]\sum_{j=1}^{\left\lfloor\frac{m}{k}\right\rfloor}[d\mid j]\)化为\(\frac{\left\lfloor\frac{n}{k}\right\rfloor}{d}\frac{\left\lfloor\frac{m}{k}\right\rfloor}{d}= \left\lfloor\frac{n}{kd}\right\rfloor\left\lfloor\frac{m}{kd}\right\rfloor\)
\[=\sum_{k=1}^n\sum_{d=1}^{\left\lfloor\frac{n}{k}\right\rfloor}\mu(d)\left\lfloor\frac{n}{kd}\right\rfloor\left\lfloor\frac{m}{kd}\right\rfloor\]
我们发现其中\(kd\)出现了两次,很烦,于是设\(T=kd\),则有
\[=\sum_{k=1}^n\sum_{d=1}^{\left\lfloor\frac{n}{k}\right\rfloor}\mu(d)\left\lfloor\frac{n}{T}\right\rfloor\left\lfloor\frac{m}{T}\right\rfloor\]
我们考虑枚举\(T,k\),因为\(T=kd\),所以确定了\(T,k\),就确定了\(d\)
\[=\sum_{T=1}^n\left\lfloor\frac{n}{T}\right\rfloor\left\lfloor\frac{m}{T}\right\rfloor\sum_{k\mid T,k\in prime}\mu(\frac{T}{k})\]

这个就是最终的式子,我们考虑对于\(\sum_{k\mid T,k\in prime}\mu(\frac{T}{k})\)进行线性筛预处理\(O(n)\)预处理出前缀和,而对于前面的部分我们用整除分块\(O(\sqrt n)\)询问,所以最后的复杂度是\(O(\sqrt n)\)

代码

#include<bits/stdc++.h>
using namespace std;
const int N=10000010;
int n,m;
int cnt=0;
int prime[N];
int sum[N];
int f[N];
int mu[N];
bool vis[N];
void init()
{
    mu[1]=1;
    for(int i=2;i<=N;i++)
    {
        if(!vis[i])
        {
            prime[++cnt]=i;
            mu[i]=-1;
        }
        for(int j=1;j<=cnt&&prime[j]*i<=N;j++)
        {
            vis[i*prime[j]]=1;
            if(i%prime[j]==0)break;
            mu[prime[j]*i]=-mu[i];
        }
    }
    for(int i=1;i<=cnt;i++)
    {
        for(int j=1;prime[i]*j<=N;j++)
        {
            f[j*prime[i]]+=mu[j];
        }
    }
    for(int i=1;i<=N;i++)sum[i]=sum[i-1]+f[i];
}
long long ans=0;
void solve(int a,int b)
{
    for(int l=1,r=0;l<=a;l=r+1)
    {
        r=min(a/(a/l),b/(b/l));
        ans+=(long long)(sum[r]-sum[l-1])*(long long)(a/l)*(long long)(b/l);
    }
}
int main()
{
    init();
    int t;
    scanf("%d",&t);
    while(t--)
    {
        ans=0ll;
        scanf("%d %d",&n,&m);
        if(n>m)swap(n,m);
        solve(n,m);
        printf("%lld\n",ans);
    }
    return 0;   
}
/*
2
10 10
100 100
*/

转载于:https://www.cnblogs.com/ShuraEye/p/11367784.html

深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值