python3(十) iteration

d = {'a': 1, 'b': 2, 'c': 3}
for key in d:
    print(key, end=' ')
# a b c dict的存储不是按照list的方式顺序排列,所以,迭代出的结果顺序很可能不一样
for ch in 'ABC':
    print(ch, end=' ')
# A B C

# 判断一个对象是否可迭代
from collections import Iterable

print(isinstance('abc', Iterable))  # True
print(isinstance([1, 2, 3], Iterable))  # True
print(isinstance({}, Iterable))  # True
print(isinstance(123, Iterable))  # False
print(isinstance((x for x in range(10)), Iterable))  # True

from collections import Iterator

print(isinstance('abc', Iterator))  # False
print(isinstance([1, 2, 3], Iterator))  # False
print(isinstance({}, Iterator))  # False
print(isinstance(123, Iterator))  # False
print(isinstance((x for x in range(10)), Iterator))  # True
# 可以被next()函数调用并不断返回下一个值的对象称为迭代器:Iterator。
# Iterator对象,但list、dict、str虽然是Iterable,却不是Iterator
# 把list、dict、str等Iterable变成Iterator可以使用iter()函数
print(isinstance(iter([]), Iterator))  # True
print(isinstance(iter('abc'), Iterator))  # True

# Python的Iterator对象表示的是一个数据流,Iterator对象可以被next()函数调用并不断返回下一个数据,直到没有数据时抛出StopIteration错误。可以把这个数据流看做是一个有序序列,但我们却不能提前知道序列的长度,只能不断通过next()函数实现按需计算下一个数据,所以Iterator的计算是惰性的,只有在需要返回下一个数据时它才会计算。
# Iterator甚至可以表示一个无限大的数据流,例如全体自然数。而使用list是永远不可能存储全体自然数的。

#
for i, value in enumerate(['A', 'B', 'C']):
    print(i, value)
# 0 A
# 1 B
# 2 C
for x, y in [(1, 1), (2, 4), (3, 9)]:
    print(x, y)

# 1 1
# 2 4
# 3 9

# 小结
# 凡是可作用于for循环的对象都是Iterable类型;
# 凡是可作用于next()函数的对象都是Iterator类型,它们表示一个惰性计算的序列;
# 集合数据类型如list、dict、str等是Iterable但不是Iterator,不过可以通过iter()函数获得一个Iterator对象。

 

转载于:https://www.cnblogs.com/shaozhiqi/p/11543550.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值