TYVJ1645 叠爱心

这题首先一看是一个很显然的最大流模型。。

但是图中有1000*1000个点,用最大流算法是无论如何都过不去的~

但是不难发现,本题的模型是一张平面图,平面图上的最大流可以用最大流最小割定理转化为对偶图上的最短路问题。。

把左下建成一个点、右上建成一个点,随便哪个为源点跑一次最短路就可以了。。

但是本题时限还是比较紧的。。SPFA据说可过但是也许我写的太渣。。推荐dij+heap~

 

Code:

#include <iostream>
#include <cmath>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <queue>

using namespace std;

const int maxn=1000001;
const int inf=999999999;

char c;
int pos[maxn],d[maxn],g[maxn],e[maxn],vv[maxn];
int t[4*maxn],next[4*maxn],w[4*maxn];
int m,n,i,j,u,len,tar,now,top,te,r=0;

struct Nint{
	int num;
};

bool operator <(Nint a,Nint b){
	return d[a.num]>d[b.num];
}

priority_queue<Nint> h;

inline int mark(int x,int y){
	if (x==0 || y==n) return 0;
	if (x==m || y==0) return tar;
	return (x-1)*(n-1)+y;
}

inline void addedge(int a,int b,int c){
	t[++r]=b;w[r]=c;
	if (g[a]==0) g[a]=e[a]=r; else{next[e[a]]=r;e[a]=r;};
	t[++r]=a;w[r]=c;
	if (g[b]==0) g[b]=e[b]=r; else{next[e[b]]=r;e[b]=r;};
	return ;
}

inline void scan(int &x){
	while(c=getchar(),c<'0'||c>'9') ;
		x=c-'0';
	while(c=getchar(),c>='0'&&c<='9')
		x=x*10+c-'0';
}

int main(){
	scanf("%d %d",&m,&n);
	tar=(m-1)*(n-1)+1;
	for (i=1;i<=m;i++)
	    for (j=1;j<n;j++){
			scan(len);
			addedge(mark(i-1,j),mark(i,j),len);
	    }
	for (i=1;i<m;i++)
	    for (j=1;j<=n;j++){
			scan(len);
			addedge(mark(i,j-1),mark(i,j),len);
	    }
	memset(d,0x3f,sizeof d);
	d[0]=0;
	Nint A;A.num=0;
	h.push(A);
	while (h.size()){
		Nint tmp=h.top();h.pop();
		if (vv[tmp.num]) continue;
		for (int u=g[tmp.num];u;u=next[u]){
			if (!vv[t[u]] && d[t[u]]>d[tmp.num]+w[u]){
				d[t[u]]=d[tmp.num]+w[u];
				A.num=t[u];h.push(A);
			}
		}
	}
	printf("%d\n",d[tar]);
	//while(1);
	return 0;
}

 

转载于:https://www.cnblogs.com/JS-Shining/archive/2012/10/24/2737047.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值