DinnerHowe的博客

DinnerHowe的博客

判断两个向量之间夹角是逆时针或顺时针

假设有两个二维向量 a 、 b,求向量a到向量b的角度是多少? 由向量夹角公式:cos<a,b>=(a.*b)/norm(a)/norm(b); 可得弧度: acos(cos<a,b>); 此时得到的...

2018-07-05 10:42:59

阅读数 1328

评论数 0

math: 四元数与欧拉角(RPY角)的相互转换

1 四元数 1.1 理论基础 在我们能够完全理解四元数之前,我们必须先知道四元数是怎么来的。四元数的根源其实是复数。 四元数的概念是由爱尔兰数学家Sir William Rowan Hamilton发明的, 公式是: i2=j2=k2=ijk=−1i2=j2=k2=ijk=−1i^2 =...

2018-04-27 14:51:25

阅读数 1048

评论数 0

math: 凸函数、拟凸函数和保凸运算

这一节主要学习凸函数的定义以及性质。了解保凸运算,以及上镜图与下水平集等。这些基础知识看似零乱,然而却是后面的基础。特别是,在实际应用中如果我们能把一个问题转化为凸优化问题,是非常好的一步。而能够这样做的前提,是知道基本的函数的凸性以及有哪些保凸运算。上镜图有助于我们从集合的角度理解这个函数为什么...

2018-04-16 14:20:27

阅读数 2014

评论数 1

math: 雅可比矩阵 黑塞矩阵

雅可比矩阵:一个多元函数的一阶偏导数以一定方式排列成的矩阵黑塞矩阵:一个多元函数的二阶偏导数以一定方式排列成的矩阵雅可比矩阵                 在向量微积分中,雅可比矩阵是一阶偏导数以一定方式排列成的矩阵,其行列式称为雅可比行列式。雅可比矩阵的重要性在于它体现了一个可微方程与给出点的...

2018-03-22 10:22:01

阅读数 1876

评论数 2

math: 图优化理论基础

图优化是视觉slam中的主流优化方法,所谓的图优化是把常规的优化问题以图的形式来表述。图(graph)由顶点(Vertex)和边(Edge)组成,在常见的slam问题中,机器人的位姿是一个顶点(Vertex),不同时刻位姿之间的关系构成边(Edge),通过不断累积而成的顶点和边构成图(graph)...

2018-03-22 10:13:33

阅读数 1184

评论数 0

math: 求质数的几种算法

1、根据质数的定义求  质数定义:只能被1或者自身整除的自然数(不包括1),称为质数。  利用它的定义可以循环判断该数除以比它小的每个自然数(大于1),如果有能被它整除的,则它就不是质数。对应代码是: /// <summary> ...

2018-03-20 10:40:35

阅读数 3931

评论数 0

math: 车辆转弯半径/akerman结构转弯半径

以转向轮外轮中心轮迹计算: 以车身最外点计算的最小转弯半径:式中:R0—转向轮外轮中心轮迹的最小转弯半径;R—车身最外点的最小转弯半径;L—轴距;θmax—转向轮外轮最大转角/转角;b—前轮距;C—前悬长度;K—整车宽度;M—主销中心距...

2018-03-15 18:28:34

阅读数 680

评论数 0

math: 四元数转欧拉角

四元数转换欧拉角以上矩阵一一对应。

2018-03-15 15:56:10

阅读数 361

评论数 0

math: 卡尔曼滤波算法原理以及python实例

文章来源维基百科卡尔曼滤波是一种高效率的递归滤波器(自回归滤波器),它能够从一系列的不完全及包含噪声的测量中,估计动态系统的状态。卡尔曼滤波的一个典型实例是从一组有限的,包含噪声的,通过对物体位置的观察序列(可能有偏差)预测出物体的位置的坐标及速度。在很多工程应用(如雷达、计算机视觉)中都可以找到...

2018-03-08 13:31:23

阅读数 8997

评论数 0

math: 贝叶斯与联合分布

贝叶斯法则通常,事件A在事件B(发生)的条件下的概率,与事件B在事件A的条件下的概率是不一样的;然而,这两者是有确定的关系,贝叶斯法则就是这种关系的陈述。作为一个规范的原理,贝叶斯法则对于所有概率的解释是有效的;然而,频率主义者和贝叶斯主义者对于在应用中概率如何被赋值有着不同的看法:频率主义者根据...

2018-01-31 11:47:35

阅读数 418

评论数 0

math: 在平面中,一个点绕任意点旋转θ度后,在原坐标系中的坐标

假设对图片上任意点(x,y),绕一个坐标点(x_origion,y_origion)逆时针旋转a角度后的新的坐标设为(x0, y0),有公式: x0= (delta(x))*cos(a) - (delta(y))*sin(a) + x_origin ; y0= (delta(x))*sin(a) ...

2018-01-22 11:35:01

阅读数 2569

评论数 0

math: 坐标系旋转变换公式图解

1 围绕原点的旋转如下图, 在2维坐标上,有一点p(x, y) , 直线opの长度为r, 直线op和x轴的正向的夹角为a。 直线op围绕原点做逆时针方向b度的旋转,到达p’ (s,t) s = r cos(a + b) = r cos(a)cos(b) – r sin(a)sin(b)   (1....

2018-01-19 20:51:49

阅读数 1512

评论数 1

提示
确定要删除当前文章?
取消 删除
关闭
关闭