hdu 4568 bfs + 状压dp

//这题的数据是不是有问题... 不考虑宝藏一个也拿不到也能AC...

  1 #include "bits/stdc++.h"
  2 using namespace std;
  3 const int INF = 0x3f3f3f3f;
  4 int T;
  5 int N, M;
  6 int mat[210][210];
  7 int K;
  8 int tot_tra, tra[210][210];
  9 
 10 //dp parameters
 11 int dis_tra_broder[20], dis_tra_tra[20][20];
 12 int dp[10000][20];
 13 
 14 //bfs parameters
 15 struct Node
 16 {
 17     int row, col;
 18     int cost;
 19     bool operator< (const Node &tmp) const
 20     {
 21         return cost > tmp.cost;
 22     }
 23 }now, Next, begin_pos[20];
 24 
 25 int dis[210][210];
 26 bool vis[210][210];
 27 
 28 inline bool check_border(int row, int col)
 29 {
 30     if(row == 1 || row == N || col == 1 || col == M) {
 31         return 1;
 32     }
 33     return 0;
 34 }
 35 
 36 inline bool check(int row, int col)
 37 {
 38     if(row < 1 || row > N || col < 1 || col > M) {
 39         return 0;
 40     }
 41     return 1;
 42 }
 43 
 44 
 45 int dx[] = {0, 0, -1, 1};
 46 int dy[] = {-1, 1, 0, 0};
 47 
 48 void bfs(int index_tra)
 49 {
 50     priority_queue<Node> q;
 51     q.push(begin_pos[index_tra]);
 52     memset(vis, 0, sizeof(vis));
 53     memset(dis, INF, sizeof(dis));
 54     dis[ begin_pos[index_tra].row ][ begin_pos[index_tra].col ] = 0;
 55     while(!q.empty()) {
 56         now = q.top();
 57         q.pop();
 58         if(vis[now.row][now.col]) {
 59             continue;
 60         }
 61         vis[now.row][now.col] = 1;
 62         if(tra[now.row][now.col]) {
 63             dis_tra_tra[index_tra][ tra[now.row][now.col] ] = now.cost;
 64         }
 65         if(check_border(now.row, now.col)) {
 66             dis_tra_broder[index_tra] = min(dis_tra_broder[index_tra], now.cost);
 67         }
 68         int i;
 69         for(i = 0; i < 4; ++i) {
 70             Next.row = now.row + dx[i];
 71             Next.col = now.col + dy[i];
 72             if(check(Next.row, Next.col) && mat[Next.row][Next.col] != -1) {
 73                 Next.cost = now.cost + mat[Next.row][Next.col];
 74                 if(Next.cost < dis[Next.row][Next.col]) {
 75                     dis[Next.row][Next.col] = Next.cost;
 76                     q.push(Next);
 77                 }
 78             }
 79         }
 80     }
 81 }
 82 
 83 int main()
 84 {
 85     scanf("%d", &T);
 86     while(T--) {
 87         memset(tra, 0, sizeof(tra));
 88         memset(dis_tra_broder, INF, sizeof(dis_tra_broder));
 89         memset(dis_tra_tra, INF, sizeof(dis_tra_tra));
 90         memset(dp, INF, sizeof(dp));
 91         scanf("%d%d", &N, &M);
 92         int i, j;
 93         for(i = 1; i <= N; ++i) {
 94             for(j = 1; j <= M; ++j) {
 95                 scanf("%d", &mat[i][j]);
 96             }
 97         }
 98         scanf("%d", &K);
 99         int row, col;
100         for(i = 1; i <= K; ++i) {
101             scanf("%d%d", &row, &col);
102             ++row;
103             ++col;
104             tra[row][col] = i;
105             begin_pos[i].row = row;
106             begin_pos[i].col = col;
107 //            begin_pos[i].cost = 0;
108         }
109         for(i = 1; i <= K; ++i) {
110             bfs(i);
111         }
112         int tot_s = (1 << K) - 1;
113         int s, step_s, u, pre_s, pre_step_s, v;
114         for(u = 1; u <= K; ++u) {
115             dp[(1 << (u - 1))][u] = dis_tra_broder[u] + mat[begin_pos[u].row][begin_pos[u].col];
116         }
117         for(s = 3; s <= tot_s; ++s) {
118             for(u = 1; u <= K; ++u) {
119                 step_s = (1 << (u - 1));
120                 if((s & step_s) && (step_s != s)) {
121                     pre_s = s ^ step_s;
122                     for(v = 1; v <= K; ++v) {
123                         pre_step_s = (1 << (v - 1));
124                         if(pre_s & pre_step_s) {
125                             dp[s][u] = min(dp[s][u], dp[pre_s][v] + dis_tra_tra[v][u]);
126                         }
127                     }
128                 }
129             }
130         }
131         int res = INF;
132         for(u = 1; u <= K; ++u) {
133             res = min(res, dp[tot_s][u] + dis_tra_broder[u]);
134         }
135         printf("%d\n", res);
136     }
137 }

 

转载于:https://www.cnblogs.com/AC-Phoenix/p/4654467.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值