【插头DP】URAL 1519 Formula 1

通道:http://acm.timus.ru/problem.aspx?space=1&num=1519

题意:单回路,经过全部可达点,有阻碍点。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>

using namespace std;

const int MAX_N = 13;
const int MAX_M = 13;
const int HASH = 10007;
const int MAX_S = 1000007; 

struct node {
	int head[HASH], nxt[MAX_S];
	long long dp[MAX_S], st[MAX_S];
	int cnt;
    void init() {
    	memset(head, -1, sizeof head);
        cnt = 0;
    }
    void push(long long s, long long v) {
    	int now = s % HASH; 
        for(int i = head[now]; ~i; i = nxt[i]) if(st[i] == s) {
            dp[i] += v;
            return ;
        }
		st[cnt] = s; dp[cnt] = v;
        nxt[cnt] = head[now];
        head[now] = cnt++;
    }
}d[2];

int n, m;
int ex, ey;

int find_pos(long long s, int p) {
    return (s >> (p << 1)) & 3;
}

void tp(long long &s, int p, long long v) {
    s &= (~(3ll << (p << 1)));
    s |= (v << (p << 1));
}

int find_r(long long s, int p) {
    int cnt = 0;
    for(int i = p; i <= m; ++i) {
        if(find_pos(s, i) == 1) ++cnt;
        else if(find_pos(s, i) == 2) --cnt;
        if(!cnt) return i;
    }
}

int find_l(long long s, int p) {
    int cnt = 0;
    for(int i = p; i >= 0; --i) {
        if(find_pos(s, i) == 2) ++cnt;
        else if(find_pos(s, i) == 1) --cnt;
        if(!cnt) return i;
    }
}

void blank(int i, int j, int cur) {
    for(int k = 0; k < d[cur].cnt; ++k) {
        long long t = d[cur].st[k];
        int l = find_pos(t, j - 1), r = find_pos(t, j);
        if(l && r) {
            if(l == 1 && r == 1) {
                int tpos = find_r(t, j);
                tp(t, j - 1, 0); tp(t, j, 0); tp(t, tpos, 1);
                d[cur ^ 1].push(t, d[cur].dp[k]);
            } else if(l == 2 && r == 1) {
                tp(t, j - 1, 0); tp(t, j, 0);
                d[cur ^ 1].push(t, d[cur].dp[k]);
            } else if(l == 2 && r == 2) {
                int tpos = find_l(t, j - 1);
                tp(t, j - 1, 0); tp(t, j, 0); tp(t, tpos, 2);
                d[cur ^ 1].push(t, d[cur].dp[k]);
            } else { // 最后一个非障碍格子 
            	tp(t, j - 1, 0); tp(t, j, 0);
		
                if (!t) if (i == ex && j == ey) d[cur ^ 1].push(t, d[cur].dp[k]);
            }
        } else if(l) {
            if(i < n) {
                d[cur ^ 1].push(t, d[cur].dp[k]);
            }
            if(j < m) {
                tp(t, j - 1, 0); tp(t, j, l);
                d[cur ^ 1].push(t, d[cur].dp[k]);
            }
        } else if(r) {
            if(j < m) {
                d[cur ^ 1].push(t, d[cur].dp[k]);
            }
            if(i < n) {
                tp(t, j - 1, r); tp(t, j, 0);
                d[cur ^ 1].push(t, d[cur].dp[k]);
            }
        } else { // 新建 
            if(i < n && j < m) {
                tp(t, j - 1, 1); tp(t, j, 2);
                d[cur ^ 1].push(t, d[cur].dp[k]);
            }
        }
    }
} 

void block(int i, int j, int cur) {
	for (int k = 0; k < d[cur].cnt; ++k) {
		long long t = d[cur].st[k];
		int l = find_pos(t, j - 1), r = find_pos(t, j);
        if (!l && !r) d[cur ^ 1].push(t, d[cur].dp[k]);
	}
} 

char str[17];
int a[MAX_N][MAX_M];

int main() {
    while (2 == scanf("%d%d", &n, &m)) {
    	memset(a, 0, sizeof a);
    	ex = ey = -1;
    	for (int i = 1; i <= n; ++i) {
    		scanf("%s", str + 1);
    		for (int j = 1; j <= m; ++j) {
    			if (str[j] == '.') {
    				a[i][j] = 1;
    				ex = i, ey = j; 
    			}
    		}
    	}
    	if (ex == -1) puts("0");
    	else {
	    	int cur = 0;
	    	d[cur].init();
	    	d[cur].push(0, 1);
	    	long long ans = 0;
	    	for (int i = 1; i <= n; ++i) {
	    		for (int j = 1; j <= m; ++j) {
	    			d[cur ^ 1].init();
	    			if (a[i][j]) blank(i, j, cur);
	    			else block(i, j, cur);
	    			cur ^= 1;
	    		}
	    		for(int k = 0; k < d[cur].cnt; ++k) {
		            d[cur].st[k] <<= 2;
		        }
	    	}
	    	for (int i = 0; i < d[cur].cnt; ++i)
	    		ans += d[cur].dp[i];
	    	printf("%I64d\n", ans);
    	}
    }
    return 0;
}

  

 

转载于:https://www.cnblogs.com/Rojo/p/4636360.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值