题意:一个国家有n个城市,有m个地方可以建造雷达,最多可以建K个雷达(K>=1 && K<=m),问雷达最短的探测半径,才能使n个城市都能探测到。
思路:比较裸一点的dl,二分答案,然后算出当前状况下 重复覆盖所需的雷达的个数,判断能否满足条件。
#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>
using namespace std;
const double eps = 1e-8;
const int MAX_U = 3007;
const int MAX_N = 57;
const int MAX_M = 57;
int K;
struct DLX {
int n, m, size;
int U[MAX_U], D[MAX_U], R[MAX_U], L[MAX_U], Row[MAX_U], Col[MAX_U];
int H[MAX_N], S[MAX_M];
int ansd;
void init(int _n, int _m) {
n = _n;
m = _m;
for (int i = 0; i <= m; ++i) {
S[i] = 0; U[i] = D[i] = i;
L[i] = i - 1; R[i] = i + 1;
}
R[m] = 0; L[0] = m;
size = m;
for (int i = 1; i <= n; ++i) H[i] = -1;
}
void Link(int r, int c) {
++S[Col[++size] = c];
Row[size] = r;
D[size] = D[c]; U[D[c]] = size;
U[size] = c; D[c] = size;
if (H[r] < 0) H[r] = L[size] = R[size] = size;
else {
R[size] = R[H[r]]; L[R[H[r]]] = size;
L[size] = H[r]; R[H[r]] = size;
}
}
void remove(int c) {
for (int i = D[c]; i != c; i = D[i])
L[R[i]] = L[i], R[L[i]] = R[i];
}
void resume(int c) {
for (int i = U[c]; i != c; i = U[i])
L[R[i]] = R[L[i]] = i;
}
bool vis[MAX_M];
int f() {
int ret = 0;
for (int c = R[0]; c != 0; c = R[c]) vis[c] = true;
for (int c = R[0]; c != 0; c = R[c]) if(vis[c]) {
ret++;
vis[c] = false;
for (int i = D[c]; i != c; i = D[i])
for(int j = R[i]; j != i; j = R[j])
vis[Col[j]] = false;
}
return ret;
}
bool dfs(int d) {
if(d + f() > K) return false;
if(R[0] == 0) {
return d <= K;
}
int c = R[0];
for (int i = R[0]; i != 0; i = R[i])
if(S[i] < S[c]) c = i;
for (int i = D[c]; i != c; i = D[i]) {
remove(i);
for (int j = R[i]; j != i; j = R[j]) remove(j);
if (dfs(d + 1)) return true;
for (int j = L[i]; j != i; j = L[j]) resume(j);
resume(i);
}
return false;
}
} dlx;
struct Point {
int x, y;
Point() {
}
Point(int _x, int _y) {
x = _x;
y = _y;
}
void in() {
scanf("%d%d", &x, &y);
}
};
int n, m;
Point city[MAX_N], le[MAX_N];
int sqr(int x) {
return x * x;
}
double dist(Point a, Point b) {
return sqrt((double)sqr((a.x - b.x)) + (double)sqr((a.y - b.y)));
}
int main() {
int T;
scanf("%d", &T);
while (T-- > 0) {
scanf("%d%d%d", &n, &m, &K);
for (int i = 0; i < n; ++i)
city[i].in();
for (int i = 0; i < m; ++i)
le[i].in();
double l = 0, r = 1e8;
while (l + eps < r) {
double mid = (l + r) / 2;
dlx.init(m, n);
for (int i = 0; i < m; ++i)
for (int j = 0; j < n; ++j)
if(dist(le[i], city[j]) < mid)
dlx.Link(i + 1, j + 1);
if(dlx.dfs(0)) r = mid;
else l = mid;
}
printf("%.6lf\n",l);
}
return 0;
}