程序员,你应该知道的二分查找算法

原理

二分查找(Binary Search)算法,也叫折半查找算法。二分查找的思想非常简单,有点类似分治的思想。二分查找针对的是一个有序的数据集合,每次都通过跟区间的中间元素对比,将待查找的区间缩小为之前的一半,直到找到要查找的元素,或者区间被缩小为 0。

为了方便理解,我们以数组1, 2, 4, 5, 6, 7, 9, 12, 15, 19, 23, 26, 29, 34, 39,在数组中查找26为例,制作了一张查找过程图,其中low标示左下标,high标示右下标,mid标示中间值下标

二分查找

二分查找的过程就像上图一样,如果中间值大于查找值,则往数组的左边继续查找,如果小于查找值这往右边继续查找。二分查找的思想虽然非常简单,但是查找速度非常长,二分查找的时间复杂度为O(logn)。虽然二分查找的时间复杂度为O(logn)但是比很多O(1)的速度都要快,因为O(1)可能标示一个非常大的数值,比例O(1000)。我们来看一张二分查找与遍历查找的效率对比图。

gif

图片来源网络

从图中可以看出二分查找用了三步就找到了查找值,而遍历则用了11步才找到查找值,二分查找的效率非常高。但是二分查找的局限性非常大。那二分查找有哪些局限性呢?

局限性

二分查找依赖数组结构

二分查找需要利用下标随机访问元素,如果我们想使用链表等其他数据结构则无法实现二分查找。

二分查找针对的是有序数据

二分查找需要的数据必须是有序的。如果数据没有序,我们需要先排序,排序的时间复杂度最低是 O(nlogn)。所以,如果我们针对的是一组静态的数据,没有频繁地插入、删除,我们可以进行一次排序,多次二分查找。这样排序的成本可被均摊,二分查找的边际成本就会比较低。

但是,如果我们的数据集合有频繁的插入和删除操作,要想用二分查找,要么每次插入、删除操作之后保证数据仍然有序,要么在每次二分查找之前都先进行排序。针对这种动态数据集合,无论哪种方法,维护有序的成本都是很高的。

所以,二分查找只能用在插入、删除操作不频繁,一次排序多次查找的场景中。针对动态变化的数据集合,二分查找将不再适用

数据量太小不适合二分查找

如果要处理的数据量很小,完全没有必要用二分查找,顺序遍历就足够了。比如我们在一个大小为 10 的数组中查找一个元素,不管用二分查找还是顺序遍历,查找速度都差不多,只有数据量比较大的时候,二分查找的优势才会比较明显。

数据量太大不适合二分查找

二分查找底层依赖的是数组,数组需要的是一段连续的存储空间,所以我们的数据比较大时,比如1GB,这时候可能不太适合使用二分查找,因为我们的内存都是离散的,可能电脑没有这么多的内存。

代码实现

二分查找可以使用循环或者递归来实现,我们来看看两种实现方式的代码。

循环

    /**
     * 循环版二分查找
     *
     * @param nums  数组
     * @param n     数组长度
     * @param value 要查找的值
     * @return
     */
    private static int bserach(int[] nums, int n, int value) {
        int low = 0;
        int high = n - 1;
        while (low <= high) {
            // 找出中间下标 
            int mid = low + ((high - low) >> 1);
            if (nums[mid] > value) {
                high = mid - 1;
            } else if (nums[mid] < value) {
                low = mid + 1;
            } else {
                return mid;
            }
        }

        return -1;
    }

递归

    /**
     * 递归算法实现二分查找
     *
     * @param nums  数组
     * @param low   左下标
     * @param high  右下标
     * @param value 要查找的值
     * @return
     */
    private static int recursiveBserach(int[] nums, int low, int high, int value) {

        if (low > high) return -1;

        // 找出中间下标
        int mid = low + ((high - low) >> 1);

        if (nums[mid] == value) {
            return mid;

        } else if (nums[mid] > value) {
            return recursiveBserach(nums, low, mid - 1, value);
        } else {
            return recursiveBserach(nums, mid + 1, high, value);
        }
    }

二分查找的代码实现起来比较简单,需要说明的地方是中间值的计算,中间值得计算有两种方式,方式一:int mid = (low +high)>>1,方式二:int mid = low + ((high - low) >> 1)。方式一存在溢出的风险,当lowhigh比较大时,有可能会导致mid的值错误,从而使程序出错。方式二则可以保证生成的mid一定大于low,小于high

上面的二分查找比较简单,我们来看看变形的二分查找。

查找第一个等于给定值的元素

比如我们给定数组1,2,3,4,4,4,5,6,7,7,8,9,我们需要查找第一个等于4的元素。


    /**
     * 查找第一个等于给定值的元素
     *
     * @param nums
     * @param length
     * @param value
     * @return
     */
    private static int bsearchFirstValue(int[] nums, int length, int value) {
        int low = 0;
        int high = length - 1;
        while (low <= high) {
            int mid = low + ((high - low) >> 1);
            if (nums[mid] > value) {
                high = mid - 1;
            } else if (nums[mid] < value) {
                low = mid + 1;
            } else {
                // 判断当前是第一个元素或者前一个元素不等于要查找的值,则返回下标,如果前一个元素也等于要查找的值,则继续往前查找。
                if ((mid == 0) || (nums[mid - 1] != value)) return mid;
                else high = mid - 1;
            }
        }
        return -1;
    }

其他的都差不多,主要的区别是在nums[mid]==value时候,因为我们要查找的是第一个等于给定值的元素,所以我们需要判断mid的前一个元素等不等于给定值,如果前一个元素也等于给定值,则需要继续往左边查找。

查找第一个大于给定值的元素

比如我们给定数组1,2,3,4,4,4,5,6,7,7,8,9,15,26,34,45,我们随便输入一个值,这个值可以是数组里面的值,也不可不在数组里面,查找出第一个比给定值大的元素。

    /**
     * 查找第一个大于给定值的元素
     *
     * @param nums   数组
     * @param length 数组的长度
     * @param value  给定的值
     * @return
     */
    private static int bserachFirstOverVlaue(int[] nums, int length, int value) {
        int low = 0;
        int high = length - 1;
        while (low <= high) {
            int mid = low + ((high - low) >> 1);
            if (nums[mid] > value) {
                // 判断当前是第一个元素或者前一个元素小于等于给定值,则返回下标,如果前一个元素大于给定的值,则继续往前查找。
                if ((mid == 0) || nums[mid - 1] <= value) return mid;
                else high = mid - 1;
            } else {
                low = mid + 1;
            }
        }
        return -1;
    }

我们需要判断当nums[mid] > value时,nums[mid-1]是否小于或者等于给定值,如果是则mid就是第一个大于给定值的元素,如果不是这继续往左边查找。

以上就是关于二分查找的相关知识,二分查找虽然性能比较优秀,但应用场景也比较有限,底层必须依赖数组,并且还要求数据是有序的。所以我们在选用算法时需要从多方面考虑。

最后

打个小广告,金九银十跳槽季,平头哥给大家整理了一份较全面的 Java 学习资料,欢迎扫码关注微信公众号:「平头哥的技术博文」领取,祝各位升职加薪。
1776326-20190822224304534-1284477785.png

转载于:https://www.cnblogs.com/jamaler/p/11397320.html

已标记关键词 清除标记
<span style="color:#404040;">1.算法是程序的灵魂,优秀的程序在对海量数据处理时,依然保持高速计算,就需要高效的数据结构和算法支撑。</span><br /><br /><span style="color:#404040;">2.网上数据结构和算法的课程不少,但存在两个问题:</span><br /><br /><span style="color:#404040;">1)授课方式单一,大多是照着代码念一遍,数据结构和算法本身就比较难理解,对基础好的学员来说,还好一点,对基础不好的学生来说,基本上就是听天书了</span><br /><span style="color:#404040;">2)说是讲数据结构和算法,但大多是挂羊头卖狗肉,算法讲的很少。 本课程针对上述问题,有针对性的进行了升级 </span><br /><span style="color:#404040;">3)授课方式采用图解+算法游戏的方式,让课程生动有趣好理解 </span><br /><span style="color:#404040;">4)系统全面的讲解了数据结构和算法, 除常用数据结构和算法外,还包括程序员常用10大算法二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法、马踏棋盘算法。可以解决面试遇到的最短路径、最小生成树、最小连通图、动态规划等问题及衍生出的面试题,让你秒杀其他面试小伙伴</span><br /><br /><span style="color:#404040;">3.如果你不想永远都是代码工人,就需要花时间来研究下数据结构和算法。</span><br /><br /><span style="color:#404040;">教程内容:</span><br /><span style="color:#404040;">本教程是使用Java来讲解数据结构和算法,考虑到数据结构和算法较难,授课采用图解加算法游戏的方式。内容包括: 稀疏数组、单向队列、环形队列、单向链表、双向链表、环形链表、约瑟夫问题、栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问题、八皇后问题、算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉树、二叉树与数组转换、二叉排序树(BST)、AVL树、线索二叉树、赫夫曼树、赫夫曼编码、多路查找树(B树B+树和B*树)、图、图的DFS算法和BFS、程序员常用10大算法二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法。</span><br /><br /><span style="color:#404040;">学习目标:</span><br /><span style="color:#404040;">通过学习,学员能掌握主流数据结构和算法的实现机制,开阔编程思路,提高优化程序的能力。</span>
表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
<p> <span>做一门精致,全面详细的 java数据结构与算法!!!</span> </p> <p> <span>让天下没有难学的数据结构,</span> </p> <p> <span>让天下没有难学的算法,</span> </p> <p> <span>不吹不黑,我们的讲师及其敬业,可以看到课程视频,课件,代码的录制撰写,都是在深夜,如此用心,其心可鉴,他不掉头发,谁掉头发???</span> </p> <p> <span>总之你知道的,不知道的,我们都讲,并且持续更新,走过路过,不要错过,不敢说是史上最全的课程,怕违反广告法,总而言之,言而总之,这门课你值得拥有,好吃不贵,对于你知识的渴求,我们管够管饱</span> </p> <p> 话不多说,牛不多吹,我们要讲的本门课程内容: </p> <p> <span style="color:#404040;">稀疏数组、单向队列、环形队列、单向链表、双向链表、环形链表、约瑟夫问题、栈、前缀、中缀、后缀表达式、中缀表达式转换为后缀表达式、递归与回溯、迷宫问题、八皇后问题、算法的时间复杂度、冒泡排序、选择排序、插入排序、快速排序、归并排序、希尔排序、基数排序(桶排序)、堆排序、排序速度分析、二分查找、插值查找、斐波那契查找、散列、哈希表、二叉树、二叉树与数组转换、二叉排序树(BST)、AVL树、线索二叉树、赫夫曼树、赫夫曼编码、多路查找树(B树B+树和B*树)、图、图的DFS算法和BFS、程序员常用10大算法二分查找算法(非递归)、分治算法、动态规划算法、KMP算法、贪心算法、普里姆算法、克鲁斯卡尔算法、迪杰斯特拉算法、弗洛伊德算法马踏棋盘算法。</span> </p>
©️2020 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客 返回首页