l1约束比l2约束更容易获得稀疏解

本文探讨了l1和l2约束在优化问题中的作用,解释了l1约束如何导致稀疏解,而l2约束则通常不会产生这样的效果。通过数学分析和图形展示,l1约束在接近0时的导数特性使得它更容易将解推向0,从而产生稀疏解,而l2约束则倾向于平滑解决方案。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文内容受到了知乎相关问题的启发,本人做了一些整理和补充。

l 1 l_1 l1 l 2 l_2 l2约束

将损失函数 L ( w ) L(w) L(w)看作参数 w w w的函数,则 l 1 l_1 l1约束的形式是:
(1) L = L ( w ) + λ ∥ w ∥ 1 L = L(w) + \lambda\left\Vert w\right\Vert_1 \tag{1} L=L(w)+λw1(1)
l 2 l_2 l2约束的形式是:
(2) L = L ( w ) + 1 2 λ ∥ w ∥ 2 2 L = L(w) +\frac{1}{2} \lambda\left\Vert w\right\Vert_2^2 \tag{2} L=L(w)+21λw22(2)

解释一

设不添加约束时, L ( w ) L(w) L(w)的图像如下图所示,使用梯度下降法找到的最优解是途中的绿色点。

<think>嗯,用户想了解L1和L2归一化的概念及用法,特别是它们在机器学习中的区别。首先,我需要明确两者的定义和数学表达。L1归一化是向量中各元素的绝对值之和为1,而L2归一化是向量的欧几里得范数为1。接下来,要解释它们的计算公式,比如L1是每个元素除以总和,L2是每个元素除以平方和的平方根。然后,应用场景方面,L1常用于疏特征,比如文本分类中的TF-IDF向量,而L2适合需要计算余弦相似度的场合,比如聚类。还要提到L1对异常值更鲁棒,而L2可能对异常值更敏感。用户可能还关心如何选择,所以需要比较两者的优缺点,并给出实际例子。最后,结合引用中的内容,比如引用2提到的余弦相似性和应用场景,可以加强回答的可信度。需要确保使用正确的中文表达,公式用$$格式,比如L1的公式和L2的公式分别展示。另外,生成的相关问题要围绕归一化的应用、数学原理、选择方法等展开,帮助用户深入理解。</think>### L1归一化与L2归一化的概念及用法 #### 1. 数学定义 - **L1归一化**(曼哈顿范数):将向量中每个元素绝对值之和约束1,计算公式为: $$ x_{\text{norm}} = \frac{x_i}{\sum_{j=1}^n |x_j|} $$ 例如,向量$(3, 4)$经L1归一化后变为$(\frac{3}{7}, \frac{4}{7})$[^2]。 - **L2归一化**(欧几里得范数):将向量的欧几里得长度约束1,计算公式为: $$ x_{\text{norm}} = \frac{x_i}{\sqrt{\sum_{j=1}^n x_j^2}} $$ 例如,向量$(3, 4)$经L2归一化后变为$(\frac{3}{5}, \frac{4}{5})$。 #### 2. 核心区别 | **特性** | **L1归一化** | **L2归一化** | |----------------|---------------------------|---------------------------| | 几何意义 | 菱形等高线 | 圆形等高线 | | 疏性 | 容易产生疏解 | 输出平滑 | | 异常值敏感性 | 较鲁棒 | 较敏感 | | 计算复杂度 | 绝对值求和(线性复杂度) | 平方和开方(非线性复杂度) | #### 3. 应用场景 - **L1归一化**常用于: - 特征选择(如LASSO回归) - 文本分类(疏特征表示) - 图像处理中的疏编码 - **L2归一化**适用于: - 计算余弦相似度(如推荐系统) - 支持向量机(SVM)的核函数 - 神经网络权重正则化(防止过拟合) #### 4. 实际案例 - **L1在文本分类**:对TF-IDF向量进行L1归一化后,特征权重可解释性增强,例如“机器学习”在文档中的重要性直接体现为归一化后的数值。 - **L2在图像检索**:对图像特征进行L2归一化后,通过余弦相似度可快速匹配相似图片。 #### 5. 如何选择? - 若需要特征疏性(如高维数据),优先选择L1; - 若关注几何距离的稳定性(如聚类分析),使用L2。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值