l1约束比l2约束更容易获得稀疏解

本文探讨了l1和l2约束在优化问题中的作用,解释了l1约束如何导致稀疏解,而l2约束则通常不会产生这样的效果。通过数学分析和图形展示,l1约束在接近0时的导数特性使得它更容易将解推向0,从而产生稀疏解,而l2约束则倾向于平滑解决方案。
摘要由CSDN通过智能技术生成

本文内容受到了知乎相关问题的启发,本人做了一些整理和补充。

l 1 l_1 l1 l 2 l_2 l2约束

将损失函数 L ( w ) L(w) L(w)看作参数 w w w的函数,则 l 1 l_1 l1约束的形式是:
(1) L = L ( w ) + λ ∥ w ∥ 1 L = L(w) + \lambda\left\Vert w\right\Vert_1 \tag{1} L=L(w)+λw1(1)
l 2 l_2 l2约束的形式是:
(2) L = L ( w ) + 1 2 λ ∥ w ∥ 2 2 L = L(w) +\frac{1}{2} \lambda\left\Vert w\right\Vert_2^2 \tag{2} L=L(w)+21λw22(2)

解释一

设不添加约束时, L ( w ) L(w) L(w)的图像如下图所示,使用梯度下降法找到的最优解是途中的绿色点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值